Skip to content
Snippets Groups Projects
Commit 5d572966 authored by Baptiste Bauvin's avatar Baptiste Bauvin
Browse files

None error in config file

parent d5abc528
Branches
Tags
No related merge requests found
# The base configuration of the benchmark # The base configuration of the benchmark
Base : Base :
log: True log: True
name: ["control_vs_malade"] name: ["plausible"]
label: "_" label: "_"
type: ".hdf5" type: ".hdf5"
views: ["300nm", "350nm"] views: ["300nm", "350nm"]
...@@ -19,12 +19,12 @@ Base : ...@@ -19,12 +19,12 @@ Base :
Classification: Classification:
multiclass_method: "oneVersusOne" multiclass_method: "oneVersusOne"
split: 0.4 split: 0.4
nb_folds: 5 nb_folds: 2
nb_class: 2 nb_class: 2
classes: classes:
type: ["monoview",] type: ["multiview",]
algos_monoview: ["decision_tree"] algos_monoview: ["decision_tree"]
algos_multiview: ["all"] algos_multiview: ["weighted_linear_early_fusion"]
stats_iter: 2 stats_iter: 2
metrics: ["accuracy_score", "f1_score"] metrics: ["accuracy_score", "f1_score"]
metric_princ: "f1_score" metric_princ: "f1_score"
...@@ -123,7 +123,7 @@ gradient_boosting: ...@@ -123,7 +123,7 @@ gradient_boosting:
###################################### ######################################
weighted_linear_early_fusion: weighted_linear_early_fusion:
view_weights: [None] view_weights: [null]
monoview_classifier_name: ["decision_tree"] monoview_classifier_name: ["decision_tree"]
monoview_classifier_config: monoview_classifier_config:
decision_tree: decision_tree:
...@@ -200,7 +200,7 @@ weighted_linear_late_fusion: ...@@ -200,7 +200,7 @@ weighted_linear_late_fusion:
splitter: ["best"] splitter: ["best"]
mumbo: mumbo:
base_estimator: [None] base_estimator: [null]
n_estimators: [10] n_estimators: [10]
best_view_mode: ["edge"] best_view_mode: ["edge"]
......
...@@ -264,7 +264,6 @@ def exec_multiview(directory, dataset_var, name, classification_indices, k_folds ...@@ -264,7 +264,6 @@ def exec_multiview(directory, dataset_var, name, classification_indices, k_folds
logging.debug("Start:\t Optimizing hyperparameters") logging.debug("Start:\t Optimizing hyperparameters")
if hyper_param_search != "None": if hyper_param_search != "None":
print(metrics)
classifier_config = hyper_parameter_search.search_best_settings( classifier_config = hyper_parameter_search.search_best_settings(
dataset_var, labels, classifier_module, classifier_name, dataset_var, labels, classifier_module, classifier_name,
metrics[0], learning_indices, k_folds, random_state, metrics[0], learning_indices, k_folds, random_state,
......
...@@ -31,7 +31,7 @@ class WeightedLinearEarlyFusion(BaseMultiviewClassifier, BaseFusionClassifier): ...@@ -31,7 +31,7 @@ class WeightedLinearEarlyFusion(BaseMultiviewClassifier, BaseFusionClassifier):
def __init__(self, random_state=None, view_weights=None, def __init__(self, random_state=None, view_weights=None,
monoview_classifier_name="decision_tree", monoview_classifier_name="decision_tree",
monoview_classifier_config={}): monoview_classifier_config={}):
print(type(view_weights), view_weights)
super(WeightedLinearEarlyFusion, self).__init__(random_state=random_state) super(WeightedLinearEarlyFusion, self).__init__(random_state=random_state)
self.view_weights = view_weights self.view_weights = view_weights
self.monoview_classifier_name = monoview_classifier_name self.monoview_classifier_name = monoview_classifier_name
...@@ -84,10 +84,12 @@ class WeightedLinearEarlyFusion(BaseMultiviewClassifier, BaseFusionClassifier): ...@@ -84,10 +84,12 @@ class WeightedLinearEarlyFusion(BaseMultiviewClassifier, BaseFusionClassifier):
example_indices, self.view_indices = get_examples_views_indices(dataset, example_indices, self.view_indices = get_examples_views_indices(dataset,
example_indices, example_indices,
view_indices) view_indices)
print(type(self.view_weights))
if self.view_weights is None: if self.view_weights is None:
self.view_weights = np.ones(len(self.view_indices), dtype=float) self.view_weights = np.ones(len(self.view_indices), dtype=float)
else: else:
self.view_weights = np.array(self.view_weights) self.view_weights = np.array(self.view_weights)
print(self.view_weights)
self.view_weights /= float(np.sum(self.view_weights)) self.view_weights /= float(np.sum(self.view_weights))
X = self.hdf5_to_monoview(dataset, example_indices) X = self.hdf5_to_monoview(dataset, example_indices)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment