diff --git a/config_files/config_test.yml b/config_files/config_test.yml index 9edf21a9e0af98288459bcb8ca7ffdba24e7f5c0..4969960bedb6e21f1ddeff7572fa3a10aeff9ae2 100644 --- a/config_files/config_test.yml +++ b/config_files/config_test.yml @@ -1,7 +1,7 @@ # The base configuration of the benchmark Base : log: True - name: ["control_vs_malade"] + name: ["plausible"] label: "_" type: ".hdf5" views: ["300nm", "350nm"] @@ -19,12 +19,12 @@ Base : Classification: multiclass_method: "oneVersusOne" split: 0.4 - nb_folds: 5 + nb_folds: 2 nb_class: 2 classes: - type: ["monoview",] + type: ["multiview",] algos_monoview: ["decision_tree"] - algos_multiview: ["all"] + algos_multiview: ["weighted_linear_early_fusion"] stats_iter: 2 metrics: ["accuracy_score", "f1_score"] metric_princ: "f1_score" @@ -123,7 +123,7 @@ gradient_boosting: ###################################### weighted_linear_early_fusion: - view_weights: [None] + view_weights: [null] monoview_classifier_name: ["decision_tree"] monoview_classifier_config: decision_tree: @@ -200,7 +200,7 @@ weighted_linear_late_fusion: splitter: ["best"] mumbo: - base_estimator: [None] + base_estimator: [null] n_estimators: [10] best_view_mode: ["edge"] diff --git a/multiview_platform/mono_multi_view_classifiers/multiview/exec_multiview.py b/multiview_platform/mono_multi_view_classifiers/multiview/exec_multiview.py index b5020c21c1d641beb0ad28690e07398648c883b8..761a970d1da6936f38fd6c421ef744f6ea77612f 100644 --- a/multiview_platform/mono_multi_view_classifiers/multiview/exec_multiview.py +++ b/multiview_platform/mono_multi_view_classifiers/multiview/exec_multiview.py @@ -264,7 +264,6 @@ def exec_multiview(directory, dataset_var, name, classification_indices, k_folds logging.debug("Start:\t Optimizing hyperparameters") if hyper_param_search != "None": - print(metrics) classifier_config = hyper_parameter_search.search_best_settings( dataset_var, labels, classifier_module, classifier_name, metrics[0], learning_indices, k_folds, random_state, diff --git a/multiview_platform/mono_multi_view_classifiers/multiview_classifiers/weighted_linear_early_fusion.py b/multiview_platform/mono_multi_view_classifiers/multiview_classifiers/weighted_linear_early_fusion.py index 159623e4dea06e3014fa96a13d2b588ca828c981..e8437154145c38b3b6e0a8d82224e31c7d569eb7 100644 --- a/multiview_platform/mono_multi_view_classifiers/multiview_classifiers/weighted_linear_early_fusion.py +++ b/multiview_platform/mono_multi_view_classifiers/multiview_classifiers/weighted_linear_early_fusion.py @@ -31,7 +31,7 @@ class WeightedLinearEarlyFusion(BaseMultiviewClassifier, BaseFusionClassifier): def __init__(self, random_state=None, view_weights=None, monoview_classifier_name="decision_tree", monoview_classifier_config={}): - + print(type(view_weights), view_weights) super(WeightedLinearEarlyFusion, self).__init__(random_state=random_state) self.view_weights = view_weights self.monoview_classifier_name = monoview_classifier_name @@ -84,10 +84,12 @@ class WeightedLinearEarlyFusion(BaseMultiviewClassifier, BaseFusionClassifier): example_indices, self.view_indices = get_examples_views_indices(dataset, example_indices, view_indices) + print(type(self.view_weights)) if self.view_weights is None: self.view_weights = np.ones(len(self.view_indices), dtype=float) else: self.view_weights = np.array(self.view_weights) + print(self.view_weights) self.view_weights /= float(np.sum(self.view_weights)) X = self.hdf5_to_monoview(dataset, example_indices)