Skip to content
Snippets Groups Projects
Commit 3dc80bce authored by Baptiste Bauvin's avatar Baptiste Bauvin
Browse files

Added logging commentary

parent fd1103b3
No related branches found
No related tags found
No related merge requests found
...@@ -45,6 +45,7 @@ def genNamesFromRes(mono, multi): ...@@ -45,6 +45,7 @@ def genNamesFromRes(mono, multi):
def resultAnalysis(benchmark, results, name, times, metrics, directory, minSize=10): def resultAnalysis(benchmark, results, name, times, metrics, directory, minSize=10):
mono, multi = results mono, multi = results
for metric in metrics: for metric in metrics:
logging.debug("Start:\t Score graph generation for "+metric[0])
names = genNamesFromRes(mono, multi) names = genNamesFromRes(mono, multi)
nbResults = len(mono) + len(multi) nbResults = len(mono) + len(multi)
validationScores = [float(res[1][2][metric[0]][1]) for res in mono] validationScores = [float(res[1][2][metric[0]][1]) for res in mono]
...@@ -78,9 +79,11 @@ def resultAnalysis(benchmark, results, name, times, metrics, directory, minSize= ...@@ -78,9 +79,11 @@ def resultAnalysis(benchmark, results, name, times, metrics, directory, minSize=
plt.tight_layout() plt.tight_layout()
f.savefig(directory + time.strftime("%Y%m%d-%H%M%S") + "-" + name + "-" + metric[0] + ".png") f.savefig(directory + time.strftime("%Y%m%d-%H%M%S") + "-" + name + "-" + metric[0] + ".png")
plt.close() plt.close()
logging.debug("Done:\t Score graph generation for " + metric[0])
def analyzeIterLabels(labelsAnalysisList, directory, classifiersNames, minSize=10): def analyzeIterLabels(labelsAnalysisList, directory, classifiersNames, minSize=10):
logging.debug("Start:\t Global label analysis figure generation")
nbExamples = labelsAnalysisList[0].shape[0] nbExamples = labelsAnalysisList[0].shape[0]
nbClassifiers = len(classifiersNames) nbClassifiers = len(classifiersNames)
nbIter = 2 nbIter = 2
...@@ -99,6 +102,8 @@ def analyzeIterLabels(labelsAnalysisList, directory, classifiersNames, minSize=1 ...@@ -99,6 +102,8 @@ def analyzeIterLabels(labelsAnalysisList, directory, classifiersNames, minSize=1
fig.tight_layout() fig.tight_layout()
fig.savefig(directory + time.strftime("%Y%m%d-%H%M%S") + "-error_analysis.png") fig.savefig(directory + time.strftime("%Y%m%d-%H%M%S") + "-error_analysis.png")
plt.close() plt.close()
logging.debug("Done:\t Global label analysis figure generation")
logging.debug("Start:\t Global error by example figure generation")
errorOnExamples = -1 * np.sum(data, axis=1) / nbIter + (nbClassifiers*len(labelsAnalysisList)) errorOnExamples = -1 * np.sum(data, axis=1) / nbIter + (nbClassifiers*len(labelsAnalysisList))
np.savetxt(directory + time.strftime("%Y%m%d-%H%M%S") + "-clf_errors.csv", data, delimiter=",") np.savetxt(directory + time.strftime("%Y%m%d-%H%M%S") + "-clf_errors.csv", data, delimiter=",")
np.savetxt(directory + time.strftime("%Y%m%d-%H%M%S") + "-example_errors.csv", errorOnExamples, delimiter=",") np.savetxt(directory + time.strftime("%Y%m%d-%H%M%S") + "-example_errors.csv", errorOnExamples, delimiter=",")
...@@ -109,9 +114,11 @@ def analyzeIterLabels(labelsAnalysisList, directory, classifiersNames, minSize=1 ...@@ -109,9 +114,11 @@ def analyzeIterLabels(labelsAnalysisList, directory, classifiersNames, minSize=1
plt.title("Number of classifiers that failed to classify each example") plt.title("Number of classifiers that failed to classify each example")
fig.savefig(directory + time.strftime("%Y%m%d-%H%M%S") + "-example_errors.png") fig.savefig(directory + time.strftime("%Y%m%d-%H%M%S") + "-example_errors.png")
plt.close() plt.close()
logging.debug("Done:\t Global error by example figure generation")
def analyzeLabels(labelsArrays, realLabels, results, directory, minSize = 10): def analyzeLabels(labelsArrays, realLabels, results, directory, minSize = 10):
logging.debug("Start:\t Label analysis figure generation")
mono, multi = results mono, multi = results
classifiersNames = genNamesFromRes(mono, multi) classifiersNames = genNamesFromRes(mono, multi)
nbClassifiers = len(classifiersNames) nbClassifiers = len(classifiersNames)
...@@ -140,6 +147,9 @@ def analyzeLabels(labelsArrays, realLabels, results, directory, minSize = 10): ...@@ -140,6 +147,9 @@ def analyzeLabels(labelsArrays, realLabels, results, directory, minSize = 10):
fig.tight_layout() fig.tight_layout()
fig.savefig(directory + time.strftime("%Y%m%d-%H%M%S") + "-error_analysis.png") fig.savefig(directory + time.strftime("%Y%m%d-%H%M%S") + "-error_analysis.png")
plt.close() plt.close()
logging.debug("Done:\t Label analysis figure generation")
logging.debug("Start:\t Error by example figure generation")
errorOnExamples = -1*np.sum(data, axis=1)/nbIter+nbClassifiers errorOnExamples = -1*np.sum(data, axis=1)/nbIter+nbClassifiers
np.savetxt(directory + time.strftime("%Y%m%d-%H%M%S") + "-clf_errors.csv", data, delimiter=",") np.savetxt(directory + time.strftime("%Y%m%d-%H%M%S") + "-clf_errors.csv", data, delimiter=",")
np.savetxt(directory + time.strftime("%Y%m%d-%H%M%S") + "-example_errors.csv", errorOnExamples, delimiter=",") np.savetxt(directory + time.strftime("%Y%m%d-%H%M%S") + "-example_errors.csv", errorOnExamples, delimiter=",")
...@@ -150,6 +160,7 @@ def analyzeLabels(labelsArrays, realLabels, results, directory, minSize = 10): ...@@ -150,6 +160,7 @@ def analyzeLabels(labelsArrays, realLabels, results, directory, minSize = 10):
plt.title("Number of classifiers that failed to classify each example") plt.title("Number of classifiers that failed to classify each example")
fig.savefig(directory + time.strftime("%Y%m%d-%H%M%S") + "-example_errors.png") fig.savefig(directory + time.strftime("%Y%m%d-%H%M%S") + "-example_errors.png")
plt.close() plt.close()
logging.debug("Done:\t Error by example figure generation")
return data return data
...@@ -201,6 +212,8 @@ def analyzeIterResults(iterResults, name, metrics, directory): ...@@ -201,6 +212,8 @@ def analyzeIterResults(iterResults, name, metrics, directory):
nbIter = len(iterResults) nbIter = len(iterResults)
names = genNamesFromRes(iterResults[0][0], iterResults[0][1]) names = genNamesFromRes(iterResults[0][0], iterResults[0][1])
for metric in metrics: for metric in metrics:
logging.debug("Start:\t Global score graph generation for " + metric[0])
figure = genScoresNames(iterResults, metric, nbResults, names, nbMono) figure = genScoresNames(iterResults, metric, nbResults, names, nbMono)
figure.savefig(directory + time.strftime("%Y%m%d-%H%M%S") + "-" + name + "-Mean_on_" figure.savefig(directory + time.strftime("%Y%m%d-%H%M%S") + "-" + name + "-Mean_on_"
+ str(nbIter) + "_iter-" + metric[0] + ".png") + str(nbIter) + "_iter-" + metric[0] + ".png")
logging.debug("Done:\t Global score graph generation for " + metric[0])
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment