Skip to content
Snippets Groups Projects
Commit fd1103b3 authored by Baptiste Bauvin's avatar Baptiste Bauvin
Browse files

Added logging commentary

parent b279acb5
No related branches found
No related tags found
No related merge requests found
......@@ -171,16 +171,16 @@ def classifyOneIter_multicore(LABELS_DICTIONARY, argumentDictionaries, nbCores,
times = [dataBaseTime, monoviewTime, multiviewTime]
results = (resultsMonoview, resultsMultiview)
labelAnalysis = analyzeLabels(labels, trueLabels, results, directory)
logging.debug("Start:\t Analyze Global Results for iteration")
logging.debug("Start:\t Analyze Iteration Results")
resultAnalysis(benchmark, results, args.name, times, metrics, directory)
logging.debug("Done:\t Analyze Global Results for iteration")
logging.debug("Done:\t Analyze Iteration Results")
globalAnalysisTime = time.time() - monoviewTime - dataBaseTime - start - multiviewTime
totalTime = time.time() - start
logging.info("Extraction time : " + str(dataBaseTime) +
"s, Monoview time : " + str(monoviewTime) +
"s, Multiview Time : " + str(multiviewTime) +
"s, Global Analysis Time : " + str(globalAnalysisTime) +
"s, Total Duration : " + str(totalTime) + "s")
"s, Iteration Analysis Time : " + str(globalAnalysisTime) +
"s, Iteration Duration : " + str(totalTime) + "s")
return results, labelAnalysis
......@@ -245,16 +245,16 @@ def classifyOneIter(LABELS_DICTIONARY, argumentDictionaries, nbCores, directory,
times = [dataBaseTime, monoviewTime, multiviewTime]
results = (resultsMonoview, resultsMultiview)
labelAnalysis = analyzeLabels(labels, trueLabels, results, directory)
logging.debug("Start:\t Analyze Global Results")
logging.debug("Start:\t Analyze Iteration Results")
resultAnalysis(benchmark, results, args.name, times, metrics, directory)
logging.debug("Done:\t Analyze Global Results")
logging.debug("Done:\t Analyze Iteration Results")
globalAnalysisTime = time.time() - monoviewTime - dataBaseTime - start - multiviewTime
totalTime = time.time() - start
logging.info("Extraction time : " + str(dataBaseTime) +
"s, Monoview time : " + str(monoviewTime) +
"s, Multiview Time : " + str(multiviewTime) +
"s, Global Analysis Time : " + str(globalAnalysisTime) +
"s, Total Duration : " + str(totalTime) + "s")
"s, Iteration Analysis Time : " + str(globalAnalysisTime) +
"s, Iteration Duration : " + str(totalTime) + "s")
return results, labelAnalysis
......@@ -324,6 +324,7 @@ def execClassif(arguments):
directories = execution.genDirecortiesNames(directory, statsIter)
if statsIter > 1:
logging.debug("Start:\t Benchmark classification")
for statIterIndex in range(statsIter):
if not os.path.exists(os.path.dirname(directories[statIterIndex] + "train_labels.csv")):
try:
......@@ -368,6 +369,8 @@ def execClassif(arguments):
classificationIndices[iterIndex], kFolds[iterIndex], statsIterRandomStates[iterIndex],
hyperParamSearch, metrics, DATASET, viewsIndices, dataBaseTime, start, benchmark,
views))
logging.debug("Done:\t Benchmark classification")
logging.debug("Start:\t Global Results Analysis")
classifiersIterResults = []
iterLabelAnalysis = []
for result in iterResults:
......@@ -378,8 +381,12 @@ def execClassif(arguments):
classifiersNames = genNamesFromRes(mono, multi)
analyzeIterLabels(iterLabelAnalysis, directory, classifiersNames)
analyzeIterResults(classifiersIterResults, args.name, metrics, directory)
logging.debug("Done:\t Global Results Analysis")
totalDur = time.time()-start
logging.info("Info:\t Total duration : "+str(totalDur))
else:
logging.debug("Start:\t Benchmark classification")
if not os.path.exists(os.path.dirname(directories + "train_labels.csv")):
try:
os.makedirs(os.path.dirname(directories + "train_labels.csv"))
......@@ -393,6 +400,9 @@ def execClassif(arguments):
kFolds,
statsIterRandomStates, hyperParamSearch, metrics, DATASET, viewsIndices, dataBaseTime, start,
benchmark, views)
logging.debug("Done:\t Benchmark classification")
totalDur = time.time()-start
logging.info("Info:\t Total duration : "+str(totalDur))
if statsIter > 1:
pass
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment