Skip to content
Snippets Groups Projects
separator.c 39.1 KiB
Newer Older
stephgc's avatar
stephgc committed
//
// Created by Stephane on 10/03/2020.
//

#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>


#include "components.h"
#include "graph.h"
#include "main.h"
#include "separator.h"
#include "utils.h"
#include "heap.h"



// Options separation
int chooseSeedNeighborMaxDegree = 0;

int separatorJustMemorizeReceptorSize = 1;
int separatorJustMemoSizeMin = 10000;

int verifyTheSeparator = 0;


int useMinPartitions = 2; // 0: maintain heap, 1-2: just put min elements at the beginning.
// 1: maintain mins   2: calculate mins only when necessary



//
// Datas structures
//

int *nbNeighborsInB;
int *nbNeighborsInA;
int nbEdgesInA, nbEdgesInB;

int *dateABDisconnected; // Current date for AB Diconnected vertices of C (date=number of current separe call)
int *nbNeighborsABDisconnected; // For AB Disconnected vertices : Number of neighbors in C which are AB disconnected

int *priorities;

int *verticesToThrow;

// Copies to memorize nb neighbors and not recalculate at each separation run
int * nbNInDestCopy; // To build the best separator
int * nbNInABCopy; // To memorize the number of neighbors in A an B of C vertices for best separator
int * nbNeighborsInS;
int nbEACopy, nbEdgesInS;
int minDegree, nbMinD; // minimal degree of vertices of S, initialised in initializeNbNeighbors()
int maxDegree, nbMaxD;


int nbCallsSepare = 0;

int nbCallsSearchSeparator = 0;

Separator sep = NULL;
Separator bestSep = NULL;
double bestEval;
int bestIsUninitialized;


int sizeMin;
int sizeMax;


// Connected components
int *component;


//
// Warning: the preliminary call to initializeNbNeighbors() place first in the lists of neighbors
// those that are in the current set S[]. It is then unnecessary to verify each time that the vertex
// belongs to the current set.

#ifdef STATS_SEPARATION
clock_t *timesSep = NULL;
int *nbSearches;
int *sumSizes;
#endif

stephgc's avatar
stephgc committed
int searchSeparator(int *S, int n, SET V, Graph g, Separator theSeparator, int nTries, int nFlushes, int depth) {
stephgc's avatar
stephgc committed

#ifdef STATS_SEPARATION
    if (timesSep == NULL) {
        timesSep = calloc(10000, sizeof(clock_t));
        nbSearches = calloc(10000, sizeof(int));
        sumSizes = calloc(10000, sizeof(int));
    }
#endif

    if (sep == NULL) sep = newSeparator(g->n, g);
    if (bestSep == NULL) bestSep = newSeparator(g->n, g);

    nbCallsSearchSeparator ++;

    theSeparator->C->n = g->n+1;
    bestEval = -1.0;
    bestIsUninitialized = 1;

    sizeMin = n * ratioMin / 100;
    if (sizeMin == 0) sizeMin = 1;

    sizeMax = n * ratioMax / 100;

stephgc's avatar
stephgc committed
    if ((g->n > 300000) && (depth < 6)) nbRunsSeparation = 1; // avoids WA ?

stephgc's avatar
stephgc committed
    //saveNbNeighbors(S, n);

    if (modeEvalAtRandom) {
        if (rand()%2 == 1) modeEvalSeparator = EVAL_CARD;
        else modeEvalSeparator = rand() % 4;
    }

    if (0) {
        // test for heur_105: much better when equal to 0
        perForceChoiceNotInC = 0;
        perChooseInCAtRandom = 0;
    }

    clock_t start = clock();

    for (int i = 0; i < nTries; i ++) {

        randomizePriorities(S, n, g);

stephgc's avatar
stephgc committed
        initSeparator(V, S, n, g, sep);
stephgc's avatar
stephgc committed

stephgc's avatar
stephgc committed
        separe(S, n, V, g, sep, nFlushes, modeEvalSeparator);
stephgc's avatar
stephgc committed

        if ((stopSearch) || ((clock()-start)/CLOCKS_PER_SEC > maxTimeSeparation/(depth+1))) break;
    }

stephgc's avatar
stephgc committed
    if (0 && depth < 3) printf("depth=%d  tSep=%.1fs  total=%.1fs\n", depth,
                          (float) (clock()-start)/CLOCKS_PER_SEC,
                          (float) (clock()-startTime)/CLOCKS_PER_SEC);

stephgc's avatar
stephgc committed
#ifdef STATS_SEPARATION
    timesSep[depth] += clock()-start;
    nbSearches[depth] ++;
    sumSizes[depth] += n;
#endif

    if (bestIsUninitialized)
        exit(0);

    if (bestEval > 0)
        copySeparator(bestSep, theSeparator);
    else
        copySeparator(sep, theSeparator);

stephgc's avatar
stephgc committed
    //if (verifyTheSeparator && (! verifySeparator(S, n, theSeparator))) exit(0);
stephgc's avatar
stephgc committed

    return 1;
}




int chooseFirstVertex(int *S, int n, Graph g) {
    if (1) {
        // Test choose as first vertex one with small degree with a neighbor with max degree
        int t = rand() % nbMaxD;
        for (int *p = S;; p++)
            if (nbNeighborsInS[*p] == maxDegree)
                if (t-- == 0) {
                    int *q = g->lists[*p];
                    int vmin = *q;
                    int min = nbNeighborsInS[*q];
                    q ++;
                    while (q < g->lists[*p]+nbNeighborsInS[*p]) {
                        if (nbNeighborsInS[*q] < min) {
                            min = nbNeighborsInS[*q];
                            vmin = *q;
                        }
                        q ++;
                    }
                    return vmin;
                }
        return NONE;
    }
    else {
        int t = rand() % nbMinD;
        for (int *p = S;; p++)
            if (nbNeighborsInS[*p] == minDegree)
                if (t-- == 0) return *p;
        return NONE;
    }

    if (n <= 10) return S[rand()%n];
    int dmin, vmin;
    vmin = S[rand()%n];
    dmin = nbNeighborsInS[vmin];
    for (int i = 0; i < 5; i ++) {
stephgc's avatar
stephgc committed
        int v = S[rand()%n];
        if (nbNeighborsInS[v] < dmin) { dmin = nbNeighborsInS[v]; vmin = v; }
    }
    return vmin;
}




stephgc's avatar
stephgc committed
int separe(int *S, int n, SET V, Graph g, Separator s, int nbFlushs, int mode) {
stephgc's avatar
stephgc committed

    int firstVertex;

    nbCallsSepare ++;

    Heap A = s->A;
    Heap B = s->B;
    Heap C = s->C;

    for (int i = 0; i < nbFlushs; i ++) {

        if (useMinPartitions) {
            minheapUpdateMin(B, -1, nbNeighborsInB);
            minheapPackMins(B, nbNeighborsInB);
            if (chooseSeedNeighborMaxDegree)
                firstVertex = (i > 0) ? NONE : chooseFirstVertex(S, n, g);
            else
                firstVertex = (i > 0) ? NONE : B->val[rand()%B->nbmin];
        }
        else {
            makeHeap(B);
            firstVertex = (i > 0) ? NONE : chooseFirstVertex(S, n, g);
        }

        heapSetCompare(C, compareCVerticesFlushBtoA);
        makeHeap(C);

stephgc's avatar
stephgc committed
        flushBtoA(A, B, C, V, S, n, mode, firstVertex, g);
stephgc's avatar
stephgc committed

        if (stopSearch) break;

        if (++ i == nbFlushs) break;

        if (useMinPartitions) {
            minheapUpdateMin(A, -1, nbNeighborsInA);
            minheapPackMins(A, nbNeighborsInA);
        }
        else
            makeHeap(A);

        heapSetCompare(C, compareCVerticesFlushAtoB);
        makeHeap(C);

stephgc's avatar
stephgc committed
        flushAtoB(A, B, C, V, S, n, mode, g);
stephgc's avatar
stephgc committed

        if (stopSearch) break;
    }

    copySeparator(bestSep, s);

stephgc's avatar
stephgc committed
    //if ( ! verifySeparator(S, n, s)) exit(0);
stephgc's avatar
stephgc committed

    return 1;
}


double evalSep(int nA, int nB, int nC, int mA, int mB, int mode, int direction) {

    // Should consider here the particular cases (B->n=0, C->n=0,...)

    int min = (nA > nB) ? nB : nA;
    int max = (nA > nB) ? nA : nB;
    int delta = max-min;
    int maxE = (mA > mB) ? mA : mB;
    int minE = (mA > mB) ? mB : mA;

    if ((nA == 0) || (nB == 0)) return 0;


    if (mode == EVAL_ESSAI) {
        // minimize C size while the numbers of constraints in A and B are small and closed
        return (1.0 / (1+nC) / (1+nC) / sqrt(1.0+maxE-minE));
    }

    if (mode == EVAL_TREE_HEIGHT_COMPLETE_GRAPH)
stephgc's avatar
stephgc committed
        // approx tree height
stephgc's avatar
stephgc committed
        return (1.0 / (nC + sqrt((double) (coeffHeightNbEdges * maxE ))));


    if ((mode == EVAL_0) || (mode == EVAL_SQRT_CARD)) {
        double ra = sqrt((double) (nA));
        double rb = sqrt((double) (nB));
        double rab = sqrt((double) (nA + nB));
        double deltaSqrt = (ra > rb) ? (ra - rb) : (rb - ra);
        if (mode == EVAL_0) return ((rab - deltaSqrt)*(rab - deltaSqrt) / (1+nC) / (1+nC));
stephgc's avatar
stephgc committed
        if (nC > 0) return ((rab - deltaSqrt) / nC / nC);
stephgc's avatar
stephgc committed
        return ((rab - deltaSqrt) / (1+nC));
    }

stephgc's avatar
stephgc committed
    if (mode == EVAL_CARD) return ((double) (min) / (nC+1)); // modified 1/05

stephgc's avatar
stephgc committed
    if (mode == EVAL_LEVEL_DENSITY) {
stephgc's avatar
stephgc committed
        // evaluate the cost to place vertices of C and the smallest among A and B
stephgc's avatar
stephgc committed
        // evaluating the number of vertices of these sets per level
        if (nA < nB) return ((double) (nA+nC) / (nC + sqrt(sqrt((double) 2.0*mB))));
        else return ((double) (nB+nC) / (nC + sqrt(sqrt((double) 2.0*mA))) );
    }

    if (mode == EVAL_MINIMIZE_C) return ((double) 1 / (1+nC));

    if (mode == EVAL_MAX_SOURCE_DENSITY) {
        if (direction == FLUSH_B_A) { // try to isolate a strongly connected kernel in B
            if (nB == 0) return 0;
            if (nB <= sizeMin) return 1.0 / (nC + 1) / (nC + 1);
            return 2.0 * mB / (nB - 1) / (nB - 1) / (nC + 1) / (nC + 1);
        }
        // direction = FLUSH_A_B
        if (nA == 0) return 0;
        if (nA == 1) return 1.0 / (nC + 1);
        return 2.0 * mA / (nA - 1) / (nA - 1) / (nC + 1) / (nC + 1);
    }

    // few vertices
    if (nA+nB+nC <= 7) return ((nC > 0) ? 1.0 / (1+delta) / (1+delta) / nC : 1.0 / (1+delta));

    if (mode == EVAL_MIN_A_B) return min;

    if (mode == EVAL_MAX_C_DENSITY) return ((nC > 0) ? (double) (nbEdgesInS-mA-mB)/nC : nbEdgesInS);

    if (mode == EVAL_MAX_CDENS_MIN_AB_SIZES) return ((nC > 0) ? (double) (nbEdgesInS-mA-mB)/nC/(delta+1) : nbEdgesInS);

    if (mode == EVAL_MAX_AB_SIZES_MIN_AB_EDGES)
        return ((double) min/(1 + ((mA > mB) ? mA : mB)));

    return 0;
}



//
// Choose and remove a vertex from A, B or C (a vertex with few neighbors in B or A)
//

int chooseEltInC(Heap C) {
    if (rand() % 100 < perChooseInCAtRandom) {
        int e = C->val[rand() % (C->n)];
        return e;
    }
stephgc's avatar
stephgc committed
    return C->val[0]; // the vertex that has the fewer neighbors in the from set
stephgc's avatar
stephgc committed
}



#define CHOICE_AB_MIN_AB 0
#define CHOICE_AB_MIN_AB_MAX_C 1

int choiceModeInAandB = CHOICE_AB_MIN_AB_MAX_C;

int chooseEltInB(Heap B) {

    if (choiceModeInAandB == CHOICE_AB_MIN_AB) {
        if (useMinPartitions) return B->val[rand()%B->nbmin];
        return B->val[0];
    }

    if (choiceModeInAandB == CHOICE_AB_MIN_AB_MAX_C) {
        // Search a vertex in B with minimal number of neighbors in B and max in C.
        int best = B->val[0];
        int nbBMin = nbNeighborsInB[B->val[0]];
        int nbCMax = nbNeighborsInS[B->val[0]] - nbNeighborsInB[B->val[0]];
        int i = 1;
        while (i < B->n) {
            if (nbNeighborsInB[B->val[i]] > nbBMin) break;
            if (nbNeighborsInS[B->val[i]] - nbNeighborsInB[B->val[i]] > nbCMax) {
                best = B->val[i];
                nbCMax = nbNeighborsInS[B->val[i]] - nbNeighborsInB[B->val[i]];
            }
            i++;
        }
        return best;
    }
    return B->val[0];
}



int chooseEltInA(Heap A) {

    if (choiceModeInAandB == CHOICE_AB_MIN_AB) {
        if (useMinPartitions) return A->val[rand()%A->nbmin];
        return A->val[0];
    }

    // (choiceModeInAandB == CHOICE_AB_MIN_AB_MAX_C)
    int i = 1, best = A->val[0];
    int nbAMin = nbNeighborsInA[A->val[0]];
    int nbCMax = nbNeighborsInS[A->val[0]] - nbNeighborsInA[A->val[0]];
    while (i < A->n) {
        if (nbNeighborsInA[A->val[i]] > nbAMin) break;
        if (nbNeighborsInS[A->val[i]] - nbNeighborsInA[A->val[i]] > nbCMax) {
            best = A->val[i];
            nbCMax = nbNeighborsInS[A->val[i]] - nbNeighborsInA[A->val[i]];
        }
        i++;
    }
    return best;

    return A->val[0];
}



int testSourceConnected = 0;
int thresholdConComponents = 13;

stephgc's avatar
stephgc committed
void flushBtoA(Heap A, Heap B, Heap C, SET V, int S[], int n, int mode, int seed, Graph g) {
stephgc's avatar
stephgc committed
    int e = NONE;
    int bestASize = NONE;

    if (seed != NONE) {
        e = seed;
        goto REMOVE_FROM_B;
    }

    while (1) {
        int sizeB = B->n;

        if (stopSearch) break;

        if ((C->n > 0) && ((B->n == 0) || (rand()%100 >= perForceChoiceNotInC))) { // Should stop if C is empty ?
            e = chooseEltInC(C);
            heapRemove(e, C);
            nbEdgesInA += nbNeighborsInA[e];
        }
        else {
            if (e == NONE) e = B->val[0]; // initial case if no seed is given
            else {
                if ((useMinPartitions == 2) && (B->nbmin <= 0)) minheapSearchAndPackMins(B, nbNeighborsInB);
                e = chooseEltInB(B);
            }

        REMOVE_FROM_B:
            if (useMinPartitions == 1) minheapRemove(e, B, nbNeighborsInB);
            else if (useMinPartitions == 2) minheapJustRemove(e, B, nbNeighborsInB);
            else heapRemove(e, B);
            nbEdgesInB = nbEdgesInB-nbNeighborsInB[e];
stephgc's avatar
stephgc committed
            decreaseNbNeighborsInB(e, B, C, V, S, n, g);
stephgc's avatar
stephgc committed
        }

        // insert e in A
        heapJustAdd(e, A);
stephgc's avatar
stephgc committed
        increaseNbNeighborsInA(e, C, V, S, n, g);
stephgc's avatar
stephgc committed

        // move e neighbors which are in B to C
stephgc's avatar
stephgc committed
        removeNeighborsFromB(e, A, B, C, V, S, n, g);
stephgc's avatar
stephgc committed

        if (A->n >= sizeMax) break;

stephgc's avatar
stephgc committed
        if (B->n < sizeMin) break;
stephgc's avatar
stephgc committed

        if (A->n >= sizeMin) {
            int nB = B->n, nEB = nbEdgesInB;

            if (testSourceConnected && (B->n > thresholdConComponents) && (B->n < sizeB)) {
                int nbComp = searchConnectedComponentsInHeap(B, nbNeighborsInS, g);
                if (nbComp > 1) {
                    int imax = indexMaxInList(compSizes, nbComp);
                    nB = compSizes[imax];
                    nEB = compNbEdges[imax];
                }
            }

stephgc's avatar
stephgc committed
            double e = evalSep(A->n, nB, C->n, nbEdgesInA, nEB, mode, FLUSH_B_A);
stephgc's avatar
stephgc committed

            if ((bestIsUninitialized) || (e > bestEval)) {
stephgc's avatar
stephgc committed
                // There can be vertices in C with no neighbor in B
stephgc's avatar
stephgc committed
                if (1) pourCintoA(A, nbNeighborsInB, nbNeighborsInA, &nbEdgesInA, C, g, 1);
                bestIsUninitialized = 0;
                bestEval = e;
                if (separatorJustMemorizeReceptorSize && (g->n >= separatorJustMemoSizeMin))
                    bestASize = A->n;
                else
                    copySeparator(sep, bestSep);
            }
        }
    }
    if ((bestIsUninitialized) && (A->n < n)) {
stephgc's avatar
stephgc committed
        if (1) pourCintoA(A, nbNeighborsInB, nbNeighborsInA, &nbEdgesInA, C, g, 1);
stephgc's avatar
stephgc committed
        bestIsUninitialized = 0;
        bestEval = e;
        copySeparator(sep, bestSep);
        return;
    }
    if ((separatorJustMemorizeReceptorSize) && (bestASize != NONE)) {
        copySeparator(sep, bestSep);
        builtBestSeparator(bestSep->A, bestSep->B, bestSep->C, nbNeighborsInA, nbNeighborsInB, bestASize, g);
    }
}




stephgc's avatar
stephgc committed
void flushAtoB(Heap A, Heap B, Heap C, SET V, int S[], int n, int mode, Graph g) {
stephgc's avatar
stephgc committed
    int e = NONE;
    int bestBSize = NONE;

stephgc's avatar
stephgc committed
    while (1) {
stephgc's avatar
stephgc committed

        int sizeA = A->n;

        if (stopSearch) break;

        if ((C->n > 0) && ((A->n == 0) || (rand()%100 >= perForceChoiceNotInC)) ) {
            e = chooseEltInC(C);
            heapRemove(e, C);
            nbEdgesInB += nbNeighborsInB[e];
        }
        else {
            if (e == NONE) e = A->val[0];
            else {
                if ((useMinPartitions == 2) && (A->nbmin <= 0)) minheapSearchAndPackMins(A, nbNeighborsInA);
                e = chooseEltInA(A);
            }
            if (useMinPartitions == 1) minheapRemove(e, A, nbNeighborsInA);
            else if (useMinPartitions == 2) minheapJustRemove(e, A, nbNeighborsInA);
            else heapRemove(e, A);
            nbEdgesInA -= nbNeighborsInA[e];
stephgc's avatar
stephgc committed
            decreaseNbNeighborsInA(e, A, C, V, S, n, g);
stephgc's avatar
stephgc committed
        }

        // insert e in B
        heapJustAdd(e, B);
stephgc's avatar
stephgc committed
        increaseNbNeighborsInB(e, C, V, S, n, g);
stephgc's avatar
stephgc committed

        // move e neighbors which are in A to C
stephgc's avatar
stephgc committed
        removeNeighborsFromA(e, A, B, C, V, S, n, g);
stephgc's avatar
stephgc committed

        if (B->n >= sizeMax) break;

stephgc's avatar
stephgc committed
        if (A->n < sizeMin) break; // 25/05
stephgc's avatar
stephgc committed

        if (B->n >= sizeMin) {
            int nA = A->n, nEA = nbEdgesInA;

            if (testSourceConnected && (A->n > thresholdConComponents) && (A->n < sizeA)) {
                int nbComp = searchConnectedComponentsInHeap(A, nbNeighborsInS, g);
                if (nbComp > 1) {
                    int imax = indexMaxInList(compSizes, nbComp);
                    nA = compSizes[imax];
                    nEA = compNbEdges[imax];
                }
            }

stephgc's avatar
stephgc committed
            double e = evalSep(nA, B->n, C->n, nEA, nbEdgesInB, mode, FLUSH_A_B);
stephgc's avatar
stephgc committed

            if ((bestIsUninitialized) || (e > bestEval)) {
stephgc's avatar
stephgc committed
                if (1) pourCintoA(B, nbNeighborsInA, nbNeighborsInB, &nbEdgesInB, C, g, 1);
stephgc's avatar
stephgc committed
                bestIsUninitialized = 0;
                bestEval = e;
                if (separatorJustMemorizeReceptorSize && (g->n >= separatorJustMemoSizeMin)) {
                    bestBSize = B->n;
                }
                else
                    copySeparator(sep, bestSep);
            }
        }
    }
    if ((separatorJustMemorizeReceptorSize) && (bestBSize != NONE)) {
stephgc's avatar
stephgc committed
        int nB = B->n;
stephgc's avatar
stephgc committed
        copySeparator(sep, bestSep);
        builtBestSeparator(bestSep->B, bestSep->A, bestSep->C, nbNeighborsInB, nbNeighborsInA, bestBSize, g);
    }
}



void builtBestSeparator(Heap dest, Heap src, Heap C, int nbNdest[], int nbNsrc[], int size, Graph g) {
    // get nb neighbors (must not be modified for next calls to flush())
    memcpy(nbNInDestCopy, nbNdest, g->n * sizeof(int));

    // put back last vertices from dest to C
    for (int i = dest->n-1; i >= size; i --) {
        int e = dest->val[i];
        dest->ind[e] = NONE;
        heapJustAdd(e, C);
        for (int *pp = g->lists[e]; *pp != NONE; pp ++)
            nbNInDestCopy[*pp] --;
    }

    // Memorize the number of neighbors in dest and src for C vertices (used for the single branch ordering)
    for (int *p = C->val; p < C->val+C->n; p ++)
        nbNInABCopy[*p] = nbNInDestCopy[*p]+nbNsrc[*p];

    dest->n = size;

    // move vertices of C which have no neighbors in dest, in src
    int i = 0;
    while (i < C->n) {
        int e = C->val[i];
        if (nbNInDestCopy[e] == 0) {
            C->n --;
            C->val[i] = C->val[C->n];
            C->ind[C->val[i]] = i;
            C->ind[e] = NONE;
            heapJustAdd(e, src);
            for (int *pp = g->lists[e]; *pp != NONE; pp ++)
                nbNInABCopy[*pp] ++;
        }
        else i ++;
    }

}





// FlushBtoA() :: e has been moved to A. e neighbors which are in B must be moved to C.
stephgc's avatar
stephgc committed
void removeNeighborsFromB(int e, Heap A, Heap B, Heap C, SET V, int *S, int n, Graph g) {
stephgc's avatar
stephgc committed
    int nbToThrow = 0;

    for (int *p = g->lists[e]; p-g->lists[e] < nbNeighborsInS[e]; p ++) { //(*p != NONE) : useless, first neighbors are in S
        if (B->ind[*p] != NONE) {

            if (nbNeighborsInB[*p] == 0) verticesToThrow[nbToThrow ++] = *p;

            if (useMinPartitions == 1)
                minheapRemove(*p, B, nbNeighborsInB);
            else if (useMinPartitions == 2)
                minheapJustRemove(*p, B, nbNeighborsInB);
            else
                heapRemove(*p, B);

            heapInsert(*p, C);
            nbEdgesInB -= nbNeighborsInB[*p];

stephgc's avatar
stephgc committed
            decreaseNbNeighborsInB(*p, B, C, V, S, n, g);
stephgc's avatar
stephgc committed
        }
    }

    if ((nbToThrow == 0) || (C->n == 0) || (B->n <= 1)) return;

    for (int *p = verticesToThrow; p < verticesToThrow+nbToThrow; p ++)
    {
        if ((C->n == 0) || (B->n <= 1)) return;
        if ((C->ind[*p] != NONE) && (nbNeighborsInB[*p] == 0)) {
            heapRemove(*p, C);
            heapJustAdd(*p, A);
            nbEdgesInA += nbNeighborsInA[*p];
stephgc's avatar
stephgc committed
            increaseNbNeighborsInA(*p, C, V, S, n, g);
stephgc's avatar
stephgc committed
void removeNeighborsFromA(int e, Heap A, Heap B, Heap C, SET V, int *S, int n, Graph g) {
stephgc's avatar
stephgc committed
    int movesToB = 0;
    for (int *p = g->lists[e]; p-g->lists[e] < nbNeighborsInS[e]; p ++) {
        if (A->ind[*p] != NONE) {

            if (nbNeighborsInA[*p] == 0) movesToB ++;

            if (useMinPartitions == 1)
                minheapRemove(*p, A, nbNeighborsInA);
            else if (useMinPartitions == 2)
                minheapRemove(*p, A, nbNeighborsInA);
            else
                heapRemove(*p, A);

            heapInsert(*p, C);
            nbEdgesInA -= nbNeighborsInA[*p];

stephgc's avatar
stephgc committed
            decreaseNbNeighborsInA(*p, A, C, V, S, n, g);
stephgc's avatar
stephgc committed
        }
    }

    if ((movesToB == 0) || (C->n == 0) || (A->n <= 1)) return;

    for (int *p = g->lists[e]; p-g->lists[e] < nbNeighborsInS[e]; p ++) {
        if ((C->n == 0) || (A->n <= 1)) return;
        if ((C->ind[*p] != NONE) && (nbNeighborsInA[*p] == 0)) {
            heapRemove(*p, C);
            heapJustAdd(*p, B);
            nbEdgesInB += nbNeighborsInB[*p];
stephgc's avatar
stephgc committed
            increaseNbNeighborsInB(*p, C, V, S, n, g);
stephgc's avatar
stephgc committed
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
        }
    }
}



int isSmallerNeighborsInB(int a, int b) {
    if (nbNeighborsInB[a] < nbNeighborsInB[b])
        return 1;
    if (nbNeighborsInB[a] > nbNeighborsInB[b])
        return 0;
    return (priorities[a] > priorities[b]);
}


int isSmallerNeighborsInA(int a, int b) {
    if (nbNeighborsInA[a] < nbNeighborsInA[b])
        return 1;
    if (nbNeighborsInA[a] > nbNeighborsInA[b])
        return 0;
    return (priorities[a] > priorities[b]);
}


int modeChoiceInCflushBA = 0;
int modeChoiceInCflushAB = 0;

// Comparator for C vertices: fewer neighbors in B is better (more neighbors in A also)
// Returns 1 if a is smaller (better) than b
int compareCVerticesFlushBtoA(int a, int b) {

    if (nbNeighborsInB[a] == 0) {
        if ((nbNeighborsInB[b] == 0) && (nbNeighborsInA[a] < nbNeighborsInA[b])) return 0;
        return 1;
    }
    if (nbNeighborsInB[b] == 0) return 0;

    int nbNaB = nbNeighborsInB[a];
    int nbNaA = nbNeighborsInA[a];
    int nbNbB = nbNeighborsInB[b];
    int nbNbA = nbNeighborsInA[b];

    if (modeChoiceInCflushBA == 0) {
        if (nbNeighborsInB[a] < nbNeighborsInB[b])
            return 1;
        if (nbNeighborsInB[a] > nbNeighborsInB[b])
            return 0;
        if (nbNeighborsInA[a] > nbNeighborsInA[b])
            return 1;
        if (nbNeighborsInA[a] < nbNeighborsInA[b])
            return 0;
        return (priorities[a] > priorities[b]);
    }

    if (modeChoiceInCflushBA == 1) {
        // If the difference bteween the numbers of neighbors in B is small but one has many more neighbors in A, then prefer this one
        if (nbNaB < nbNbB) {
            if (nbNaA >= nbNbA) return 1;
            return  (nbNbA - nbNaA < (nbNbB - nbNaB + 2) * (nbNbB - nbNaB + 2) - 1);
        }
        if (nbNaB > nbNbB) {
            if (nbNaA <= nbNbA) return 0;
            return (nbNaA - nbNbA >= (nbNaB - nbNbB + 2) * (nbNaB - nbNbB + 2) - 1);
        }
        if (nbNaA == nbNbA) return (priorities[a] > priorities[b]);
        return (nbNaA > nbNbA);
    }


    if (modeChoiceInCflushBA == 2) {
        if (nbNaB < nbNbB) {
            if (nbNaA >= nbNbA) return 1;
            if ((nbNaA == 0) || (100 * nbNbA) / nbNaA >= 100 * (1 + nbNbB - nbNaB)) return 0;
            return 1;
        }
        if (nbNaB > nbNbB) {
            if (nbNaA <= nbNbA) return 0;
            if ((nbNbA == 0) || (100 * nbNaA) / nbNbA >= 100 * (1 + nbNaB - nbNbB)) return 1;
            return 0;
        }
        if (nbNaA == nbNbA) return (priorities[a] > priorities[b]);
        return (nbNaA > nbNbA);
    }
    return 1;

    if (0) {
        float ea = nbNeighborsInB[a] * nbNeighborsInB[a] / nbNeighborsInA[a];
        float eb = nbNeighborsInB[b] * nbNeighborsInB[b] / nbNeighborsInA[b];

        if (ea < eb) return 1;
        if (ea > eb) return 0;
        return (priorities[a] > priorities[b]);
    }
}



int compareCVerticesFlushAtoB(int a, int b) {

    if (nbNeighborsInA[a] == 0) {
        if ((nbNeighborsInA[b] == 0) && (nbNeighborsInB[a] < nbNeighborsInB[b])) return 0;
        return 1;
    }
    if (nbNeighborsInA[b] == 0) return 0;


    if (modeChoiceInCflushAB == 0) {
        if (nbNeighborsInA[a] < nbNeighborsInA[b])
            return 1;
        if (nbNeighborsInA[a] > nbNeighborsInA[b])
            return 0;
        if (nbNeighborsInB[a] > nbNeighborsInB[b])
            return 1;
        if (nbNeighborsInB[a] < nbNeighborsInB[b])
            return 0;
        return (priorities[a] > priorities[b]);
    }


    if (modeChoiceInCflushAB == 1) {
        if (nbNeighborsInA[a] < nbNeighborsInA[b]) {
            if (nbNeighborsInB[a] >= nbNeighborsInB[b]) return 1;
            if (nbNeighborsInB[b] - nbNeighborsInB[a] >=
                (nbNeighborsInA[b] - nbNeighborsInA[a] + 1) * (nbNeighborsInA[b] - nbNeighborsInA[a] + 1) )
                return 0;
            return 1;
        }
        if (nbNeighborsInA[a] > nbNeighborsInA[b]) {
            if (nbNeighborsInB[a] <= nbNeighborsInB[b]) return 0;
            if (nbNeighborsInB[a] - nbNeighborsInB[b] >=
                (nbNeighborsInA[a] - nbNeighborsInA[b] + 1) * (nbNeighborsInA[a] - nbNeighborsInA[b] + 1) )
                return 1;
            return 0;
        }
        //if (nbNeighborsInB[a] == nbNeighborsInB[b]) {
        if (nbNeighborsInB[a] > nbNeighborsInB[b]) return 1;
        if (nbNeighborsInB[a] < nbNeighborsInB[b]) return 0;
        return (priorities[a] > priorities[b]);
    }

    if (modeChoiceInCflushAB == 2) {
        if (nbNeighborsInA[a] < nbNeighborsInA[b]) {
            if (nbNeighborsInB[a] >= nbNeighborsInB[b]) return 1;
            if ((nbNeighborsInB[a] == 0) || ((100*nbNeighborsInB[b]) / nbNeighborsInB[a] >=
                                             100 * (1 + nbNeighborsInA[b] - nbNeighborsInA[a]) ))
                return 0;
            return 1;
        }
        if (nbNeighborsInA[a] > nbNeighborsInA[b]) {
            if (nbNeighborsInB[a] <= nbNeighborsInB[b]) return 0;
            if ((nbNeighborsInB[b] == 0) || ((100*nbNeighborsInB[a]) / nbNeighborsInB[b] >=
                                             100 * (1 + nbNeighborsInA[a] - nbNeighborsInA[b]) ))
                return 1;
            return 0;
        }
        //if (nbNeighborsInB[a] == nbNeighborsInB[b]) {
        if (nbNeighborsInB[a] > nbNeighborsInB[b]) return 1;
        if (nbNeighborsInB[a] < nbNeighborsInB[b]) return 0;
        return (priorities[a] > priorities[b]);
    }
    return 1;
}



//
// Dust separator: for vertices of C that have no neighbor in A or B
//

void pourCintoA(Heap A, int nbNFrom[], int nbNTo[], int *nbEdges, Heap C, Graph g, int justAdd) {
    for (int i = 0; i < C->n; i++) {
        int e = C->val[i];
        if (nbNFrom[e] == 0) {
            heapRemove(e, C);
            if (justAdd)
                heapJustAdd(e, A);
            else
                heapInsert(e, A);
            *nbEdges = *nbEdges + nbNTo[e];
            for (int *p = g->lists[e]; *p != NONE; p ++) nbNTo[*p]++;
        }
    }
}


//
// C improvement
//

int nbCVerticesWithNoNeighborInAAndB(Heap C, SET V, int *S, int n, Graph g) {
    if (C->n == 0) return 0;
    int nb = 0;
    for (int *p = C->val; p < C->val+C->n; p ++) {
        if ((nbNeighborsInB[*p] == 0) && (nbNeighborsInA[*p] == 0)) nb ++;
    }
    return nb;
}

// Search vertices of C with no neighbor in A nor in B, count the number of neighbors in C,
// finally order them (those with the fewer neighbors in C first) and make a selection
// of independent such vertices. Each of them will form an isolated vertex.
void selectABDisconnectedVertices(Separator sep, SET V, int *S, int n, int date, Graph g) {
    Heap C = sep->C;
    if (C->n == 0) { sep->nbABDV = 0; return ; }
    int nb = 0;
    for (int *p = C->val; p < C->val+C->n; p ++) {
        if ((nbNeighborsInB[*p] == 0) && (nbNeighborsInA[*p] == 0)) {
            dateABDisconnected[*p] = date; // mark *p as an AB Disconnected certex for current separe call
            nbNeighborsABDisconnected[*p] = 0;
            swapValues(C->val+nb, p);
            nb ++;
        }
    }
    if (nb == 0) { sep->nbABDV = 0; return;}

    printf("nb AB Disconnected = %d :: ", nb);
    for (int i = 0; i < nb; i ++) printf("%d (%d,%d)   ", C->val[i], nbNeighborsInB[C->val[i]], nbNeighborsInA[C->val[i]]);
    printf("\n");
    printList(sep->A->val, sep->A->n);
    printList(sep->B->val, sep->B->n);
    printList(C->val, C->n);


    if (nb <= 1) { sep->nbABDV = nb; return ; }

    sep->nbABDV = 1;
    return ;

    // Calculate the degree of each AB Disconnected vertex in the set of AB Disconnected vertices.
    for (int *p = C->val; p < C->val+nb; p ++) {
        for (int *q = g->lists[*p]; q < g->lists[*p]+nbNeighborsInS[*p]; q ++) {
            if (dateABDisconnected[*q] == date)
                nbNeighborsABDisconnected[*q] ++;
        }
    }
    // Order AB Disconnected vertices, the less connected first.
    for (int i = nb; i > 1; i --) {
        int someSwap = 0;
        for (int j = nb-1; j > 0; j --) {
            if (nbNeighborsABDisconnected[C->val[j]] < nbNeighborsABDisconnected[C->val[j - 1]]) {
                swap(C->val, j, j - 1);
                someSwap = 1;
            }
        }
        if (someSwap == 0) break;
    }
    // Select independent AB Disconnected vertices (mark dateABDisconnected[*p] = -nbCallsSepare when selected)
    dateABDisconnected[C->val[0]] = -date;
    int nbS = 1;
    int i = 1;
    while (i < nb) {
        // the ith AB Disconnected vertex is chosen if independent with previous selected vertices
        int v = C->val[i];
        int *q = g->lists[v];
        for ( ; q < g->lists[v]+nbNeighborsInS[v]; q ++)
            if (dateABDisconnected[*q] == -date)
                break;
        if (q == g->lists[v]+nbNeighborsInS[v]) {
            swap(C->val, i, nbS);
            dateABDisconnected[v] = -date;
            nbS ++;
            i ++;
        }
    }
    printf("nbS=%d\n", nbS);

    // verif
    if (0) {
        for (int i = 0; i < nbS - 1; i++)
            for (int j = i + 1; j < nbS; j++)
                if (areNeighbours(C->val[i], C->val[j], g))
                    printf("OUYE\n");
    }
    sep->nbABDV = nbS;
}










//
// Improvement: search moves from A/B to C that generate moves from C to A/B
// Seems useless.


void improveSeparation(Separator s, Graph g, int nSteps) {
    int moves[s->C->n];
    int nbmoves;

    START:
    nbmoves = 0;
    // Moves A->C (neighbors C->B)
    for (int i = 0; i < nSteps; i ++) {
        int u;
        int nbMoves = searchMoveAC(s, g, moves, &u);
        if (u == NONE)
            return;
        makeMove(u, s->A, s->C);
        for (int j = 0; j < nbMoves; j ++) {
            makeMove(moves[j], s->C, s->B);
        }
        nbMoves ++;
    }

    // Moves B->C (neighbors C->A)
    for (int i = 0; i < nSteps; i ++) {
        int u;
        int nbMoves = searchMoveBC(s, g, moves, &u);
        if (u == NONE)
            return;
        makeMove(u, s->B, s->C);
        for (int j = 0; j < nbMoves; j ++) {
            makeMove(moves[j], s->C, s->A);
        }
        nbMoves ++;
    }

    if ((nbmoves > 0) && (nSteps -- > 0))
        goto START;
}


// There could be a problem with nbNeighborsInHeap(neighbor) since the flag for presence in
// A, B and C has not been necessarily initialized
int searchMoveAC(Separator s, Graph g, int movesCB[], int *the) {
    Heap A = s->A;

    for (int i = A->n-1; i >= 0; i --) {
        // evaluate transfer of u from A to C.
        // Good transfer if some neighbors of u are in C and can be moved to B
        LIST p = g->adj[A->val[i]];
        int nb = 0;
        while (p != NULL) {
            if ( (s->C->ind[p->val] != NONE) && (nbVerticeInHeap(g->lists[p->val], nbNeighborsInS[p->val], s->A, g) == 1) ) // (nbNeighborsInHeap(p->val, s->A, g) == 1)
                // p->val could be moved to B
                movesCB[nb ++] = p->val;
            p = p->suiv;
        }
        if ((nb > 1) || ((nb == 1) && (rand()%2))) {
            *the = A->val[i];
            return nb;
        }
    }
    return NONE;
}


int searchMoveBC(Separator s, Graph g, int movesCA[], int *the) {
    Heap B = s->B;

    for (int i = B->n-1; i >= 0; i --) {
        // evaluate transfer of u from A to C.
        // Good transfer if some neighbors of u are in C and can be moved to A
        LIST p = g->adj[B->val[i]];
        int nb = 0;
        while (p != NULL) {
            if ( (s->C->ind[p->val] != NONE) && (nbNeighborsInB[p->val] == 1) )
                // p->val could be moved to A
                movesCA[nb ++] = p->val;
            p = p->suiv;
        }
        if ((nb > 1) || ((nb == 1) && (rand()%2))) {
            *the = B->val[i];
            return nb;
        }
    }
    return NONE;
}



void makeMove(int v, Heap source, Heap dest) {
    heapRemove(v, source);
    heapInsert(v, dest);
}





//
// Strcture separator
//


Separator newSeparator(int size, Graph g) {
    Separator s = malloc(sizeof(struct separator));
    s->A = allocHeap(size, isSmallerNeighborsInA);
    s->B = allocHeap(size, isSmallerNeighborsInB);
    s->C = allocHeap(size, compareCVerticesFlushBtoA);
    s->graph = g;
    return s;
}



void allocSeparation(Graph g) {

    nbNeighborsInB = malloc(g->n * sizeof(int));
    nbNeighborsInA = malloc(g->n * sizeof(int));

    nbNInDestCopy = malloc(g->n * sizeof(int));
    nbNInABCopy = malloc(g->n * sizeof(int));
    nbNeighborsInS = malloc(g->n * sizeof(int));

    nbNeighborsABDisconnected = malloc(g->n * sizeof(int));
    dateABDisconnected = calloc(g->n, sizeof(int));

    priorities = malloc(g->n * sizeof(int));

    verticesToThrow = malloc(g->n * sizeof(int));
}


int isABetterSeparator(Separator best, Separator s) {
    return (best->C->n <= s->C->n);
}


void copySeparator(Separator src, Separator dest) {
    dest->A->n = src->A->n;
    dest->B->n = src->B->n;
    dest->C->n = src->C->n;
    memcpy(dest->A->val, src->A->val, src->A->n * sizeof(int));
    memcpy(dest->B->val, src->B->val, src->B->n * sizeof(int));
    memcpy(dest->C->val, src->C->val, src->C->n * sizeof(int));
}



void recoverNbNeighbors(int S[], int n) {
    nbEdgesInA = 0;
    nbEdgesInB = nbEdgesInS;
    for (int i = 0; i < n; i++) {
        nbNeighborsInA[S[i]] = 0;
        nbNeighborsInB[S[i]] = nbNeighborsInS[S[i]];
    }
}



stephgc's avatar
stephgc committed
int initializeNbNeighbors(SET V, int S[], int n, int pos[], Graph g) {
stephgc's avatar
stephgc committed
    nbEdgesInS = 0;
    minDegree = n+1;
    maxDegree = -1;

    for (int i = 0; i < n; i++) {
        // count the number of neighbors of S[i] in S and place them at the beginning of the list
        int nb = 0;
        int *p = g->lists[S[i]];
        while (*p != NONE) {
            if (pos[*p] != NONE) {
                if (p - g->lists[S[i]] != nb) { int tmp=*p; *p=g->lists[S[i]][nb]; g->lists[S[i]][nb] = tmp; }
                nb ++;
            }
            p++;
        }
        nbNeighborsInS[S[i]] = nb;
        if (nb < minDegree) { nbMinD = 1; minDegree = nb; }
        else if (nb == minDegree) nbMinD ++;
        if (nb > maxDegree) { maxDegree = nb; nbMaxD = 1; }
        else if (nb == maxDegree) nbMaxD ++;
        nbEdgesInS += nb;
    }
    nbEdgesInS = nbEdgesInS/2;
    return nbEdgesInS;
}



stephgc's avatar
stephgc committed
void initSeparator(SET V, int *S, int n, Graph g, Separator s) {
stephgc's avatar
stephgc committed

    resetHeap(s->A);
    resetHeap(s->B);
    resetHeap(s->C);

    // mark nodes that are not concerned in this run, just considering the nodes of S and their neighbors
    // (when n is small, it is better to consider just the vertices that could interest us)
    for (int i = 0; i < n; i++) {
        s->A->ind[S[i]] = s->B->ind[S[i]] = s->C->ind[S[i]] = NONE;
    }

    // Insert all vertices in B
    for (int i = 0; i < n; i ++) {
        heapJustAdd(S[i], s->B);
    }

    recoverNbNeighbors(S, n);
}




int verifySeparator(int *S, int n, Separator s) {

    if ((s->A->n == s->graph->n) || (s->B->n == s->graph->n)) {
        printf("verifySeparator : %d --> %d %d %d\n", n, s->A->n, s->B->n, s->C->n);
        return 0;
    }


    for (int i = 0; i < n; i ++) {
        int nb = 0;
        nb += nbOccs(S[i], s->A->val, s->A->n);
        nb += nbOccs(S[i], s->B->val, s->B->n);
        nb += nbOccs(S[i], s->C->val, s->C->n);
        if (nb == 0) {
            printf("verifySeparator : %d is not in A,B,C\n", S[i]);
            return 0;
        }
        if (nb > 1) {
            printf("verifySeparator : %d is in ", S[i]);
            if (nbOccs(S[i], s->A->val, s->A->n) > 0) printf("A ");
            if (nbOccs(S[i], s->B->val, s->B->n) > 0) printf("B ");
            if (nbOccs(S[i], s->C->val, s->C->n) > 0) printf("C ");
            printf("\n");
            return 0;
        }
    }
    return 1;
}



void printSeparator(Separator s) {
    printf("separation: ");
    for (int i = 0; i < s->A->n; i ++) printf("%d,", s->A->val[i]);
    printf(" -- ");
    for (int i = 0; i < s->B->n; i ++) printf("%d,", s->B->val[i]);
    printf("  -- ");
    for (int i = 0; i < s->C->n; i ++) printf("%d,", s->C->val[i]);
    printf("\n");
    //printf("%d + %d + %d\n", s->B->n, s->C->n, s->A->n);
}


int nbCallsdecreaseNbNeighborsInB = 0;
// Only for flushBtoA stage. u has been removed from B => decrease the number of neighbors in B for all B neighbors,
// Neighbors have been ordered so that those in S[] occur first in the list
stephgc's avatar
stephgc committed
void decreaseNbNeighborsInB(int u, Heap B, Heap C, SET V, int S[], int n, Graph g) {
stephgc's avatar
stephgc committed
    int nb = 0;

        for (int * p = g->lists[u]; *p != NONE; p ++) {

        nbNeighborsInB[*p] --;
        if (B->ind[*p] != NONE) {
            if (useMinPartitions)
                minheapDecreaseValue(*p, B, nbNeighborsInB);
            else
                heapBubbleUp(B->ind[*p], B);
        }
        else if (C->ind[*p] != NONE)
            heapBubbleUp(C->ind[*p], C);
        if ( ++ nb == nbNeighborsInS[u]) break;
    }
}


// Only for flushAtoB(). u has been inserted in B (for flushAtoB)
stephgc's avatar
stephgc committed
void increaseNbNeighborsInB(int u, Heap C, SET V, int S[], int n, Graph g) {
stephgc's avatar
stephgc committed
    int nb = 0;
    for (int *pp = g->lists[u]; *pp != NONE; pp ++) {
        nbNeighborsInB[*pp] ++;
        if (C->ind[*pp] != NONE)
            heapBubbleUp(C->ind[*pp], C);
        if ( ++ nb == nbNeighborsInS[u]) break;
    }
}



// for flushAtoB
stephgc's avatar
stephgc committed
void decreaseNbNeighborsInA(int u, Heap A, Heap C, SET V, int S[], int n, Graph g) {
stephgc's avatar
stephgc committed
    int nb = 0;
    for (int *p = g->lists[u]; *p != NONE; p ++) {
        nbNeighborsInA[*p] --;
        if (A->ind[*p] != NONE) {
            if (useMinPartitions)
                minheapDecreaseValue(*p, A, nbNeighborsInA);
            else
                heapBubbleUp(A->ind[*p], A);
        }
        else if (C->ind[*p] != NONE)
            heapBubbleUp(C->ind[*p], C);
        if ( ++ nb == nbNeighborsInS[u]) break;
    }
stephgc's avatar
stephgc committed
    return;
stephgc's avatar
stephgc committed
}



// for flushBtoA
stephgc's avatar
stephgc committed
void increaseNbNeighborsInA(int u, Heap C, SET V, int S[], int n, Graph g) {
stephgc's avatar
stephgc committed
    int nb = 0;
    for (int *pp = g->lists[u]; *pp != NONE; pp ++) {
        nbNeighborsInA[*pp] ++;
        if (C->ind[*pp] != NONE)
            heapBubbleUp(C->ind[*pp], C);
        // It is useless to consider u neighbors which are in B, there is none
        if ( ++ nb == nbNeighborsInS[u]) break; // first neighbors are those in S[]
    }
stephgc's avatar
stephgc committed
    return;
stephgc's avatar
stephgc committed
}


// Supposes that the numbers of neighbors in S[] are OK, and neighbors occur first in the lists.
int verifyNbNeighbors(Heap A, Heap B, Heap C, SET V, int S[], int n, Graph g) {
    int nbEIA = 0, nbEIB = 0;
    for (int i = 0; i < n; i ++) {
        int nbNA = nbVerticeInHeap(g->lists[S[i]], nbNeighborsInS[S[i]], A, g);
        if (nbNA != nbNeighborsInA[S[i]]) { printf("bad nbNeighborsInA %d :: %d in place of %d\n", S[i], nbNeighborsInA[S[i]], nbNA); return 0; }
        int nbNB = nbVerticeInHeap(g->lists[S[i]], nbNeighborsInS[S[i]], B, g);
        if (nbNB != nbNeighborsInB[S[i]]) { printf("bad nbNeighborsInB %d :: %d in place of %d\n", S[i], nbNeighborsInB[S[i]], nbNB); return 0; }
        if (isInHeap(S[i], A)) nbEIA += nbNA;
        if (isInHeap(S[i], B)) nbEIB += nbNB;
    }
    nbEIA = nbEIA/2;
    nbEIB = nbEIB/2;
    if (nbEIA != nbEdgesInA) { printf("bad nbEdgesInA :: %d it should be %d\n", nbEdgesInA, nbEIA); return 0; }
    if (nbEIB != nbEdgesInB) { printf("bad nbEdgesInB :: %d it should be %d\n", nbEdgesInB, nbEIB); return 0; }
    //printf("nb neighbors is OK \n");
    return 1;
}



void initializePriorities(Graph g) {
    for (int i = 0; i < g->n; i ++)
        priorities[i] = rand()%(10*g->n);
}

void randomizePriorities(int S[], int n, Graph g) {
    for (int i = 0; i < n; i ++)
        priorities[S[i]] = rand()%(10*g->n);
}