Skip to content
Snippets Groups Projects
decompose.c 27 KiB
Newer Older
stephgc's avatar
stephgc committed
//
// Created by Stephane on 10/03/2020.
//

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#include "decompose.h"
#include "components.h"
#include "compression.h"
#include "swaps.h"
#include "graph.h"
#include "main.h"
#include "separator.h"
#include "tree.h"
#include "utils.h"
#include "heap.h"

extern int trace;
extern char * last_name;


int *bestTree;
int bestHeight;
int bestEvalMode = NONE;


Separator separator;

Node * theNodes;

SET * theSets;
int nbAllocatedSets;

int ** components;
int ** componentsOf;
int nbAllocatedComponents;
int topComponents;



int nbCallsDecompose = 0;
int nbCallsDecomposeComponents = 0;

extern int indpdNbCalls;

int mustVerifyDecomposition = 0;



void updateBestDecomposition(Node root, Graph g) {
    if ((root != NULL) && (root->height < bestHeight)) {
        bestHeight = root->height;
        saveToTable(bestTree, g);
        bestEvalMode = modeEvalSeparator;
    }
}



void allocAndInitializeDecomposition(Graph g) {
    separator = newSeparator(g->n, g);

    allocSeparation(g);
    allocNodes(g);
    nbAllocatedSets = 100;
    allocSets(g, nbAllocatedSets);

    nbAllocatedComponents = 100;
    allocComponents(g, nbAllocatedComponents);
    allocSearchConnectedComponents(g);

    bestTree = malloc(g->n * sizeof(int));
    bestHeight = g->n+1;
}

void initializeRun(Graph g, int S[], int pos[]) {
    topComponents = 0;

    for (int i = 0; i < g->n; i ++) {
        S[i] = i;
        pos[i] = i;
    }
}

void markRemoved(int S[], int n, int pos[]) {
    for (int i = 0; i < n; i ++)
        pos[S[i]] = NONE;
}


#ifdef STATS_SEPARATION
extern clock_t *timesSep;
extern int *nbSearches;
extern int *sumSizes;
#endif


void testDecompose(Graph g, int nbRuns, int algo) {
    int *S = malloc(g->n * sizeof(int)); // list of vertices
stephgc's avatar
stephgc committed
    int *posS = malloc(g->n * sizeof(int)); // booleans for separation
stephgc's avatar
stephgc committed
    int *nbCriticalNodes = malloc(g->n * sizeof(int)); // to calculate the numbers of critical nodes at each level
    int bestHDec = g->n+1;
    Node root;
    int h0, h1, h2;
    int nbEffectiveRuns = 0;
    int nbRunsAttempted = 0;
    int trace = 0;

    if (perForceChoiceNotInC == NONE)
        perForceChoiceNotInC = (g->n > 7600) ? 10 : 0;

    clock_t startTimeRun;
    clock_t startTimeImprove;
    clock_t totalTimeDecompose = 0;
    clock_t totalTimeImprove = 0;

    allocAndInitializeDecomposition(g);
    allocConnectionsHeap(g);

    if (preliminaryGreedyDecomposition && (algo != GREEDY_ALGORITHM) && (g->n < maxSizePrelimGreedy)) {
        nbEffectiveRuns ++;
        initConHeap(g);
        root = greedyDecompose(conHeap, 0, g, g->n+1, 1);
        if (trace) printf("greedy first decomp h=%d  %.1fs\n", root->height, (float) (clock()-startTime)/CLOCKS_PER_SEC);
        if (root != NULL) updateBestDecomposition(root, g);
        if (stopSearch) goto SAVE_AND_EXIT;
    }

    for (int i = 0; i < nbRuns; i ++) {

        startTimeRun = clock();
        if ((startTimeRun-startTime)/CLOCKS_PER_SEC >= time_limit)
            break;

        if (algo == SEPARE_AND_EXPLORE) {
            initializePriorities(g);
            initializeRun(g, S, posS);
        }

        int maxDepth = bestHDec*(100+depthThreshold)/100;
        if (noSwapsInFirstRuns) maxDepth = bestHDec+1;

        initConHeap(g);

        if (algo == GREEDY_ALGORITHM) {
            root = greedyDecompose(conHeap, 0, g, maxDepth, 1);
            if (trace) printf("greedy decomp h=%d  %.1fs\n", (root == NULL) ? -1 : root->height, (float) (clock()-startTime)/CLOCKS_PER_SEC);
        }
        else if (algo == SEPARE_AND_EXPLORE) {
            root = decompose(S, g->n, posS, 0, g, maxDepth, 0);
            if (trace) printf("decompose h=%d  %.1fs\n", (root == NULL) ? -1 : root->height, (float) (clock()-startTime)/CLOCKS_PER_SEC);
        }

        nbRunsAttempted ++;
        if (stopSearch) break;

        totalTimeDecompose += (clock()-startTimeRun);

        if (root == NULL) {
            if (nbRunsSeparation < 50) nbRunsSeparation ++;
            continue;
        }

        nbEffectiveRuns ++;
        h0 = root->height;
        if (root->height < bestHDec) bestHDec = root->height;

        if (printStats) printStatsOnCriticalNodes(root, nbCriticalNodes);

        updateBestDecomposition(root, g);

        if (noSwapsInFirstRuns) {
            if ((clock()-startTime) / CLOCKS_PER_SEC < timeWithNoSwaps * time_limit / 100) continue; // Shunt improve at the beginning
            root = buildTreeFromTable(bestTree, g);
            noSwapsInFirstRuns = 0;
            nbRuns = 1000000;
        }

        startTimeImprove = clock();
        if (pullUpIndependentSubtrees || searchSwapsInCriticalBranch) {
            root = makeSwapsInCriticalBranch(root, g);
            if (trace) printf("improve  %d --> %d  %.1fs\n", h0, root->height, (float) (clock()-startTime)/CLOCKS_PER_SEC);
            updateBestDecomposition(root, g); // useless
        }
        totalTimeImprove += (clock()-startTimeImprove);

        if (stopSearch) break;

        if (mustVerifyDecomposition) if ( ( ! verifyTree(root, 0)) || ( ! verifyDecomposition(root, g)) ) exit(0);

        if (0) printf("decompose h=%d --> %d  %.1fs \n", h0, root->height, (float) (clock()-startTimeRun)/CLOCKS_PER_SEC);

#ifdef THE_OLD_IMPROVEMENT
        if ( ! improve) { if (trace) printf("\n"); continue; }
        if (root->height > bestHDec*(100+depthThreshold)/100) {if (trace) printf("abandon\n"); continue;}
    IMPROVE_TREE:

        if (stopSearch) break;

        if (compressTree) {
            exploreAndCompress(root, g, 0);
            h1 = root->height;
            verifyTree(root, 0);

            if (trace) printf("h1=%d %.1fs %d  ", h1, (float) (clock() - startTimeRun) / CLOCKS_PER_SEC, indpdNbCalls);
            if (root->height < bestHeight) {
                bestHeight = root->height;
                saveToTable(bestTree, g);
                if (trace) printf("\nbestC=%d ", root->height);
            }

            if (stopSearch) break;
        }

        searchForksSwaps(root, g, root->height);
        h2 = root->height;
        verifyTree( root, 0);

        if (trace) printf("h2=%d %.1fs %d  ", h2, (float) (clock()-startTimeRun)/CLOCKS_PER_SEC, indpdNbCalls);
        if (root->height < bestHeight) { bestHeight = root->height; saveToTable(bestTree, g); if (trace) printf("\nbestFS=%d ", root->height); }

        if (h2 < h0) goto IMPROVE_TREE;

        if (trace) printf("\n");
#endif
    }

#ifdef STATS_SEPARATION
    for (int i = 0; ; i ++) {
        if (nbSearches[i] == 0) break;
        printf("[%d]  %d x %.1fs   (size=%d)\n", i, nbSearches[i],
                (float) (timesSep[i] / nbSearches[i]) / CLOCKS_PER_SEC, sumSizes[i]/nbSearches[i]);
    }
#endif

SAVE_AND_EXIT:
    if (printResult) printf("%s %d %d   runs=%d/%d   calls=%d+%d+%d   h=%d    %.2fs + %.2fs   hdec=%d  mode=%d\n",
            last_name, g->n, g->m, nbEffectiveRuns, nbRunsAttempted,
            nbCallsDecompose, nbCallsDecomposeComponents, nbCallsSwapNode,
            bestHeight,
            (float) totalTimeDecompose/CLOCKS_PER_SEC, (float) totalTimeImprove/CLOCKS_PER_SEC,
            bestHDec, bestEvalMode);
    if (printSolution) {
        PACEOutput(fileSolution, bestHeight, bestTree, g);
    }
}


//
// Decomposition : SEPARE_AND_EXPLORE
//

Node decompose(int *S, int n, int pos[], int depth, Graph g, int hmax, int connected) {

    nbCallsDecompose ++;
    //int nbCalls = nbCallsDecompose;

    if (trace) printf("[%d] call %d  n=%d   \n", depth, nbCallsDecompose, n);

stephgc's avatar
stephgc committed
    assert(depth <= g->n);

stephgc's avatar
stephgc committed
    if (stopSearch) return NULL;
    if (n == 0) return NULL;
    if (hmax <= 0) return NULL;

    if (n <= 3) { markRemoved(S, n, pos); return makeSmallTree(S, n, g); }

    if (0 && n <= sizeSwitchToGreedy) {
        conHeap->val = S;
        conHeap->n = n;
        // must first rebuild conHeap
        return greedyDecompose(conHeap, depth, g, hmax, 1);
    }

stephgc's avatar
stephgc committed
    SET set = NULL;
    if (n > 105) {
        if (theSets[depth] == NULL) reAllocSets(100, g);
        set = makeSet(S, n, theSets[depth]);
stephgc's avatar
stephgc committed
    }
stephgc's avatar
stephgc committed
    else
        Introsort(S, S, S + n - 1);
stephgc's avatar
stephgc committed

    // Search connected components
stephgc's avatar
stephgc committed
    if (depth > 0) {
        int nbComp = searchConnectedComponents(set, S, n, g);
stephgc's avatar
stephgc committed
        if (stopSearch) return NULL;
        if (nbComp > 1) {
            if (trace) printf("components: %d   ", nbComp);
            return decomposeConnectedComponents(iComp, nbComp, S, n, pos, depth, g, hmax);
        }
    }

stephgc's avatar
stephgc committed
    int nbEdges = initializeNbNeighbors(set, S, n, pos, g); // for searchSeparator()

    if (2*nbEdges == n*(n-1)) {
        markRemoved(S, n, pos);
        return makeSingleBranch(S, n, NULL, g);
    }

    //searchSeparator(S, n, set, g, separator, (n < 20) ? 1 : nbRunsSeparation, (n < 20) ? 1 : nbFlushes, NULL, 0);
    searchSeparator(S, n, set, g, separator, nbRunsSeparation, nbFlushes, depth);
stephgc's avatar
stephgc committed

    if (stopSearch) return NULL;

stephgc's avatar
stephgc committed
    if (0) {
        improveSeparation(separator, g, 0); // Seg fault with 100 runs "./treedepth -file ../public/heur_007.gr "
        printf("improve :: %d %d %d\n", separator->B->n, separator->C->n, separator->A->n);
    }

stephgc's avatar
stephgc committed
    //root = makeSingleBranchWithDisconnectedVertices(separator->C->val, separator->C->n, separator->nbABDV, g);
    Node root = makeSingleBranch(separator->C->val, separator->C->n, nbNInABCopy, g);

    Node theLastOfTheBranch = bottomNode;
    markRemoved(separator->C->val, separator->C->n, pos);

    int nA = separator->A->n;
    int nB = separator->B->n;
    int nC = separator->C->n;
    Node A, B;

stephgc's avatar
stephgc committed
    if (0) { for (int i = 0; i < depth; i ++) printf(" "); printf("%d %d     %d\n", 1000*nA/n, 1000*nB/n, 1000*nC/n); }

    assert(nC > 0); // Indeed, the subgraph is connected here.


stephgc's avatar
stephgc committed
    int *listA = S;
    int *listB = S+nA; // no need for S after here

    if (trace) printf("   sep: %d,%d,%d\n", nA, nB, nC);

    copyList(listA, separator->A->val, nA);
    copyList(listB, separator->B->val, nB);

    // Here nbNeighborsInA and nbNeighborsInB contain for each vertex in listA and listB
    // its number of neighbors in listA and listB. No need to recalculate in initSeparator.

    if (nA >= nB) {
        A = decompose(listA, nA, pos, depth + 1, g, hmax - nC, 0);
        if (stopSearch) return NULL;
        if ((A == NULL) && (nA > 0)) {
            root = NULL;
            goto FIN;
        }
        B = decompose(listB, nB, pos, depth + 1, g, hmax - nC, 0);
        if (stopSearch) return NULL;
        if ((B == NULL) && (nB > 0)) {
            root = NULL;
            goto FIN;
        }
    }
    else {
        B = decompose(listB, nB, pos, depth + 1, g, hmax - nC, 0);
        if (stopSearch) return NULL;
        if ((B == NULL) && (nB > 0)) {
            root = NULL;
            goto FIN;
        }
        A = decompose(listA, nA, pos, depth + 1, g, hmax - nC, 0);
        if (stopSearch) return NULL;
        if ((A == NULL) && (nA > 0)) {
            root = NULL;
            goto FIN;
        }
    }


stephgc's avatar
stephgc committed
    if (0) if (sizeForest(A)+ sizeForest(B)+ sizeForest(root) != nA+nB+nC) {
stephgc's avatar
stephgc committed
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
        printf("nA=%d nB=%d nC=%d  A:%d  B:%d root:%d\n", nA, nB, nC, sizeForest(A), sizeForest(B), sizeForest(root));
        exit(0);
    }


    if (root == NULL) {
        if (A == NULL) { root = B; goto FIN; }
        if (B == NULL) { root = A; goto FIN; }
        //assert(A->next == NULL);
        //assert(B->next == NULL);
        root = A;
        while (A->next != NULL) A = A->next;
        A->next = B;
        assert((root->next == NULL) || (depth > 0));
        goto FIN;
    }


    if (A != NULL) {
        if (A->next == NULL)
            addChild(A, theLastOfTheBranch);
        else {
            while (A != NULL) {
                Node next = A->next;
                addChild(A, theLastOfTheBranch);
                A = next;
            }
        }
    }


    if (B != NULL) {
        if (B->next == NULL)
            addChild(B, theLastOfTheBranch);
        else {
            while (B != NULL) {
                Node next = B->next;
                addChild(B, theLastOfTheBranch);
                B = next;
            }
        }
    }

    if (theLastOfTheBranch->father != NULL)
        updateIncHeightOnBranch(theLastOfTheBranch->father, theLastOfTheBranch->height);

    //updateBranchUp(theLastOfTheBranch, root);
    FIN:

    //verifyTree(root, depth);
    return root;
}


Node decomposeConnectedComponents(int *iComp, int nbComp, int *S, int n, int pos[], int depth, Graph g, int hmax) {

    Node list = NULL, node;

    nbCallsDecomposeComponents ++;

    int *sizes = malloc(nbComp*sizeof(int)); // To memorize sizes after first explorations

    sortListByComponent(S, n, nbComp, sizes);
    int nbV = 0;

    for (int i = 0; i < nbComp; i ++) {
        if (stopSearch) { list = NULL; break; }

        node = decompose(S+nbV, sizes[i], pos, depth, g, hmax, 1);

        if ((node == NULL) || (stopSearch)) return NULL;

        node->next = list;
        if (list != NULL) list->prev = node;
        list = node;

        nbV += sizes[i];
    }

    return list;

#ifdef OLD_VERSION
    int *component, *componentOf;

    if (components[topComponents] == NULL) reAllocComponents(g, 100);
    component = components[topComponents];
    componentOf = componentsOf[topComponents];
    topComponents ++;

    // Memorize iComp[] that may be used in next calls
    for (int i = 0; i < n; i ++)
        componentOf[i] = iComp[S[i]];

    for (int i = 0; i < nbComp; i ++) {
        if (stopSearch) { list = NULL; break; }

        int size = extractList(i, S, n, componentOf, component);

        node = decompose(component, size, depth, g, hmax, 1);
        if (node == NULL) { topComponents --; return NULL; }

        node->next = list;
        if (list != NULL) list->prev = node;
        list = node;
    }

    topComponents --;
    return list;
#endif
}



//
// Greedy-decompose (V,E)
// 1. select vertex u with highest degree,
// 2. C:=disconnectedComponents(V-{u},E),
// 3. tree:=<u>,
// 4. for each c in C do
// 5.    addChild(Greedy-decompose(c,E), tree),
// 6. return tree,

int lastRemovedVertex = NONE;

Node greedyDecompose(Heap conHeap, int depth, Graph g, int hmax, int connected) {

    nbCallsDecompose ++;

    if (depth > maxDepthGreedy) return NULL;

    //int localNbCalls = nbCallsDecompose;

    if (trace) printf("[%d] call %d  n=%d  max=%d ", depth, nbCallsDecompose, conHeap->n, maxNbN4Con);

    if (stopSearch) return NULL;
    if (conHeap->n == 0) return NULL;
    if (hmax == 0) return NULL;

    if (conHeap->n <= SIZE_SMALL_TREE) {
        Node root = makeSmallTree(conHeap->val, conHeap->n, g);
        heapRemoveAll(conHeap);
        return root;
    }

    // Isolated vertices
    if (nbUnconnectedVertices > 0) {
        //assert(connected == 0);
        if (trace) printf(" :: %d unconnected vertices :: %d --> %d\n", nbUnconnectedVertices, conHeap->n, conHeap->n - nbUnconnectedVertices);
        Node last;
        Node root =  makeListWithUnconnectedVertices(conHeap, g, &last);
        if (conHeap->n > 0) {
            nbUnconnectedVertices = 0;
            Node sibling = greedyDecompose(conHeap, depth + 1, g, hmax, 0);
            if (sibling == NULL)
                return NULL;
            last->next = sibling;
        }
        return root;
    }

    // Search disconnected components
    if (( ! connected) && (depth > 0) && (lastRemovedVertex != NONE) &&
            (nbN4Con[lastRemovedVertex] != 1)) { // added 7/04/2020
        int nbComp = searchConnectedComponentsGreedy(NULL, conHeap, g, lastRemovedVertex);
        if (nbComp > 1) {       //if (trace) { printf("components [%d]   ", nbComp); for (int i = 0; i < nbComp; i ++) printf("%d,", compSizes[i]); printf("\n");}
            return greedyDecomposeComponents(iComp, nbComp, conHeap, depth, g, hmax);
        }
    }

    if (stopSearch) return NULL;

    // Build a tree whose root is a node with highest degree

    int vertex = vertexWithManyConnections(conHeap, MAX_CONNECTED_BEST_AT_RANDOM);

    if (trace) printf("remove %d (nbN=%d)\n", vertex, nbN4Con[vertex]);

    //if (nbInListWithThisValue(maxNbN4Con, conHeap->val, conHeap->n, nbN4Con) != nbMax4Con) { printf("AAA max=%d  %d et non pas %d\n",maxNbN4Con, nbInListWithThisValue(maxNbN4Con, conHeap->val, conHeap->n, nbN4Con), nbMax4Con); exit(0); }

    heapRemove(vertex, conHeap);

    if (nbN4Con[vertex] == maxNbN4Con) {
        if (--nbMax4Con == 0) updateNbMaxConInHeap(conHeap);
    }

    if (nbN4Con[vertex] == 0) nbUnconnectedVertices --;

    //printf("1. max=%d nbMax=%d  -->  ", maxNbN4Con, nbMax4Con);
    //if (nbInListWithThisValue(maxNbN4Con, conHeap->val, conHeap->n, nbN4Con) != nbMax4Con) { printf("BBB max=%d  %d et non pas %d\n",maxNbN4Con, nbInListWithThisValue(maxNbN4Con, conHeap->val, conHeap->n, nbN4Con), nbMax4Con); exit(0); }

    updateHeapNbNAfterRemoval(vertex, conHeap, g);

    //assert(conHeap->n > 0);
    if (nbMax4Con == 0) updateNbMaxConInHeap(conHeap);

    //printf("2. max=%d nbMax=%d\n", maxNbN4Con, nbMax4Con);
    //if (nbInListWithThisValue(maxNbN4Con, conHeap->val, conHeap->n, nbN4Con) != nbMax4Con) { printf("CCC max=%d  %d et non pas %d\n",maxNbN4Con, nbInListWithThisValue(maxNbN4Con, conHeap->val, conHeap->n, nbN4Con), nbMax4Con); exit(0); }

    Node root = theNodes[vertex];
    resetNode(root);

    lastRemovedVertex = vertex;

    Node children = greedyDecompose(conHeap, depth+1, g, hmax, 0);

    if (children == NULL)
        return NULL;

    if (children->next == NULL)
        addChild(children, root);
    else {
        while (children != NULL) {
            Node child = children;
            children = children->next;
            addChild(child, root);
        }
    }

    //verifyTree(root, 0);

    return root;
}



Node greedyDecomposeComponents(int iComp[], int nbComp, Heap conHeap, int depth, Graph g, int hmax) {
// Normally there is no component of size 1
    nbCallsDecomposeComponents ++;
    int numCall = nbCallsDecomposeComponents;

    int *sizes = malloc(nbComp*sizeof(int)); // To memorize sizes after first explorations

    sortListByComponent(conHeap->val, conHeap->n, nbComp, sizes);

    if (trace) {
        printf(" :: split call %d : %d components : ", nbCallsDecomposeComponents, nbComp);
        for (int i = 0; i < nbComp; i ++) printf("%d ", sizes[i]);
        printf("\n");
    }

    // The number of neighbors of u in S[] is the number of neighbors of u in its component
    // No need to update.
    Node list = NULL, node;
    int nb = 0;
    int *val = conHeap->val;
    for (int i = 0; i < nbComp; i ++) {

        if (stopSearch) { conHeap->val = val; free(sizes); return NULL; }

        conHeap->n = sizes[i];
        conHeap->val = val+nb;
        nb += sizes[i];

        if (i == nbComp-1) free(sizes);

        lastRemovedVertex = NONE;

        if (conHeap->n <= SIZE_SMALL_TREE) {
            node = makeSmallTree(conHeap->val, conHeap->n, g);
            heapRemoveAll(conHeap);
        }
        else if (rebuildConHeap(conHeap)) {
            // clique
            node = makeSingleBranch(conHeap->val, conHeap->n, NULL, g);
            heapRemoveAll(conHeap);
        }
        else
            node = greedyDecompose(conHeap, depth, g, hmax, 1); // the component is connected

        if (0 && ! verifyDecomposition(node, g)) { printf("Error: decCompCall %d  depth=%d\n", numCall, depth); exit(0); }

        if (node == NULL) { conHeap->val = val; if (i != nbComp-1) free(sizes); return NULL; }

        node->next = list;
        if (list != NULL) list->prev = node;
        list = node;
    }

    conHeap->val = val;
    //free(sizes);

    return list;
}




Node makeListWithUnconnectedVertices(Heap heap, Graph g, Node *last) {
    // unconnected vertices are at the end of the heap
    // They are just removed from the heap, the degree of their already removed neighbors is not updated
    int firstUV = heap->n - nbUnconnectedVertices;
    Node node = NULL;
    *last = NULL;

    for (int i = heap->n - 1; i >= firstUV ; i --) {
        int u = heap->val[i];
        assert (nbN4Con[u] == 0);
        //heapRemove(heap->val[i], heap);
        heap->ind[u] = NONE;
        Node p = theNodes[u];
        resetNode(p);
        if (*last == NULL) *last = p;
        p->next = node;
        node = p;
    }
    heap->n = firstUV;
    return node;
}


Node makeSmallTree(int *S, int n, Graph g) {

    if (n == 0) return NULL;

    Node u = theNodes[S[0]];
    resetNode(u);

    if (n == 1) return u;

    Node v = theNodes[S[1]];
    resetNode(v);

    if (n == 2) {
        if (areNeighbours(u->vertex, v->vertex, g)) {
            addChild(v, u);
            return u;
        }
        //connectSiblings(u, v);
        u->next = v;
        return u;
    }

    Node w = theNodes[S[2]];
    resetNode(w);

    int status = 0;
    if (areNeighbours(u->vertex, v->vertex, g))
        status += 1;
    if (areNeighbours(u->vertex, w->vertex, g))
        status += 2;
    if (areNeighbours(v->vertex, w->vertex, g))
        status += 4;


    if (status == 7) { // Clique -> branch
        addChild(w, v);
        addChild(v, u);
        return u;
    }

    if (status == 6) { // (u,w) (v,w) -> w(u,v)
        addChild(u, w);
        addChild(v, w);
        return w;
    }

    if (status == 4) { // (v,w) -> w(v),u
        addChild(v, w);
        w->next = u; // addChild(u, w);
        return w;
    }

    if (status == 2) { // (u,w) -> w(u),v
        addChild(u, w);
        w->next = v; // addChild(v, w)
        //connectSiblings(w, v);
        return w;
    }

    if (status == 5) { // (u,v) (v,w) -> v(u,w)
        addChild(w, v);
        addChild(u, v);
        return v;
    }

    if (status == 1) { // (u,v) -> v(u),w
        addChild(u, v);
        v->next = w; // addChild(w, v);
        //connectSiblings(v, w);
        return v;
    }

    if (status == 3) { // (u,v) (u,w) -> u(v,w)
        addChild(v, u);
        addChild(w, u);
        return u;
    }

    //addChild(v, u);
    //addChild(w, u);
    //return u;

    // (status == 0) :: (u,v) (u,w) -> u(v,w)
    u->next = v;
    v->next = w;
    //connect3Siblings(u, v, w);

    return u;
}





//
// Utils
//



void allocNodes(Graph g) {
    theNodes = malloc(g->n*sizeof(Node));
    for (int i = 0; i < g->n; i ++)
        theNodes[i] = newNode(i, g);
}

void allocSets(Graph g, int max) {
    theSets = calloc((size_t) (g->n), sizeof(SET));
    for (int i = 0; i < max; i ++)
stephgc's avatar
stephgc committed
        theSets[i] = allocSet(g->n + 100);
stephgc's avatar
stephgc committed
}


void allocComponents(Graph g, int max) {
    components = calloc((size_t) (g->n), sizeof(int *));
    componentsOf = calloc((size_t) (g->n), sizeof(int *));
    for (int i = 0; i < max; i ++) {
        components[i] = malloc((size_t) (g->n) * sizeof(int));
        componentsOf[i] = malloc((size_t) (g->n) * sizeof(int));
    }
}



// Alloc new sets if necessary
void reAllocSets(int size, Graph g) {

    for (int i = nbAllocatedSets; i < nbAllocatedSets+size; i++) {
        theSets[i] = allocSet(g->n);
    }
    nbAllocatedSets += size;
}


void reAllocComponents(Graph g, int size) {
    for (int i = nbAllocatedComponents; i < nbAllocatedComponents+size; i ++) {
        components[i] = malloc((size_t) (g->n) * sizeof(int));
        componentsOf[i] = malloc((size_t) (g->n) * sizeof(int));
    }
    nbAllocatedComponents += size;
}




void PACEOutput(FILE *file, int height, int fathers[], Graph g) {

    if (file == NULL) file = stdout;

    fprintf(file, "%d\n", height);

    for (int i = 0; i < g->n; i ++) {
        fprintf(file, "%d\n", fathers[i]);
    }
}


void saveToTable(int T[], Graph g) {
    for (int i = 0; i < g->n; i ++) {
        T[i] = (theNodes[i]->father == NULL) ? 0 : (theNodes[i]->father->vertex+1);
    }
}

Node buildTreeFromTable(int T[], Graph g) {
    Node root = NULL;

    for (int i = 0; i < g->n; i ++)
        theNodes[i]->father = theNodes[i]->next = theNodes[i]->fbs = NULL;

    for (int i = 0; i < g->n; i ++) {
        Node father = (T[i] == 0) ? NULL : theNodes[T[i]-1];
        theNodes[i]->father = father;
        if (father != NULL) {
            theNodes[i]->next = father->fbs;
            father->fbs = theNodes[i];
        } else
            root = theNodes[i];
    }
    return root;
}


// Verify that the decomposition tree is correct for the edges of g
// Note : tree may be a partial decomposition of g (does not contain all the vertices of g)
int exploreAndSetFathers(Node p, int F[]) {
    Node q = p->fbs;
    if (F[p->vertex] != NONE) { printf("vertex %d occurs twice !\n", p->vertex); return 0; }
    while (q != NULL) {
        if ( ! exploreAndSetFathers(q, F)) return 0;
        F[q->vertex] = p->vertex;
        q = q->next;
    }
    return 1;
}

int areInSameBranch(int u, int v, int F[]) {
    int i = u;
    while ((i != NONE) && (i != v))
        i = F[i];
    if (i == v) return 1;
    i = v;
    while ((i != NONE) && (i != u))
        i = F[i];
    return (i == u);
}

int verifyDecomposition(Node tree, Graph g) {
    //printf("43e neighbor of %d = %d\n", 13280-1, g->lists[13280-1][43]);
    if (sizeTree(tree) != g->n) { printf("Error size %d nodes\n", sizeTree(tree)); return 0; }
    int F[g->n];
    for (int i = 0; i < g->n; i ++)
        F[i] = NONE;
    if ( ! exploreAndSetFathers(tree, F)) return 0;
    int nbNONE = 0;
    for (int u = 0; u < g->n; u ++) if (F[u] == NONE) nbNONE ++;
    if (nbNONE != 1) { printf("Error : %d nodes not in tree\n", nbNONE-1); return 0; }
        //printf(" in same branch 13280 16624 : %d\n", areInSameBranch(13280-1, 16624-1, F));
    for (int u = 0; u < g->n; u ++) {
        if (F[u] != NONE) {
            for (int *p = g->lists[u]; *p != NONE; p ++) {
                //if ((u == 13280-1) && (*p == 16624-1)) printf("test edge %d %d %d\n", u, *p, (int) (p-g->lists[u]));
                //if ((u == 16624-1) && (*p == 13280-1)) printf("test edge %d %d %d\n", u, *p, (int) (p-g->lists[u]));
                if (F[*p] != NONE) {
                    // g contains edge (u,q->val) and u and q->val are in the tree
                    //if ((u == 16624-1) && (*p == 13280-1)) printf("edge %d %d %d\n", u, *p, (int) (p-g->lists[u]));
                    //if ((u == 13280-1) && (*p == 16624-1)) printf("edge %d %d %d\n", u, *p, (int) (p-g->lists[u]));
                    if ( ! areInSameBranch(u, *p, F)) {
                        printf("Error edge (%d,%d)\n", u, *p);
                        return 0;
                    }
                }
            }
        }
#ifdef NOTDEF
        if (F[u] != NONE) {
            LIST q = g->adj[u];
            while (q != NULL) {
                if ((u == 13280) && (q->val == 16624)) printf("Yahou\n");
                if ((u == 16624) && (q->val == 13280)) printf("Yahou\n");
                if (F[q->val] != NONE) {
                    // g contains edge (u,q->val) and u and q->val are in the tree
                    if ( ! areInSameBranch(u, q->val, F)) {
                        printf("Error edge (%d,%d)\n", u, q->val);
                        return 0;
                    }
                }
                q = q->suiv;
            }
        }
#endif
    }
    return 1;
}



void printStatsOnCriticalNodes(Node root, int *nbCriticalNodes) {
    makeStatsCriticalNodes(root, nbCriticalNodes);
//for (int i = 0; i < root->height; i++) printf("[%d] %d\n", i, nbCriticalNodes[i]);
    printf("[%d] %d\n", 0, nbCriticalNodes[0]);
    for (int i = 1; i < root->height; i++) if (nbCriticalNodes[i] != nbCriticalNodes[i-1]) printf("[%d] %d\n", i, nbCriticalNodes[i]);
    printf("[%d] %d\n", root->height-1, nbCriticalNodes[root->height-1]);
}