Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
//
// Created by Stephane on 10/03/2020.
//
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include "decompose.h"
#include "graph.h"
#include "tree.h"
#include "sets.h"
#include "utils.h"
Node newNode(int vertex, Graph g) {
Node v = malloc(sizeof(struct node));
v->vertex = vertex;
v->height = 0;
v->nbhmax = 0;
v->next = v->prev = v->fbs = v->lbs = NULL;
v->father = NULL;
v->nodes = NULL; //allocSet(g->n);
v->depth = 0;
v->date = 0;
return v;
}
void resetNode(Node p) {
p->fbs = p->lbs = p->next = p->prev = p->father = NULL;
p->height = 1;
p->nbhmax = 0;
//VideSet(p->nodes);
}
// Calculate the height for this node, returns true if height has been modified
int initializeHeight(Node p) {
int h = p->height;
p->height = 1;
Node q = p->fbs;
p->nbhmax = 0;
while (q != NULL) {
if (p->height < q->height+1) { p->height = q->height+1; p->nbhmax = 1; }
else if (p->height == q->height+1) p->nbhmax ++;
q = q->next;
}
return (p->height != h);
}
// Update heights and number of children with max height for all the nodes
void updateHeights(Node root) {
Node q = root->fbs;
while (q != NULL) {
updateHeights(q);
q = q->next;
}
initializeHeight(root);
}
// Update depths
void updateDepths(Node p, int depth) {
p->depth = depth;
Node q = p->fbs;
while (q != NULL) {
updateDepths(q, depth + 1);
q = q->next;
}
}
// prepare improvement: set depths and heights and free nodes sets for all nodes of the subtree
void updateDepthsAndHeights(Node p, int depth, int verbose) {
int height = 1;
if (verbose && (p->depth != depth)) printf("depth node %d : %d -> %d\n", p->vertex, p->depth, depth);
p->depth = depth;
Node q = p->fbs;
while (q != NULL) {
updateDepthsAndHeights(q, depth + 1, verbose);
if (q->height+1 > height) height = q->height+1;
q = q->next;
}
if (verbose && (p->height != height)) printf("height node %d : %d -> %d\n", p->vertex, p->height, height);
p->height = height;
}
void updateDepthsInCriticalBranch(Node p, int depth, Node end) {
while (1) {
p->depth = depth;
if (p == end)
break;
p = p->fbs;
depth ++;
}
}
void sortNeighborsInBranch(Node p, Graph g) {
while (p != NULL) {
int *list = g->lists[p->vertex];
Introsort(list, list, list+g->nadj[p->vertex]-1);
p = p->father;
}
}
int nbNeighborsAbove(Node node, Graph g) {
int *N = g->slists[node->vertex];
int nN = g->nadj[node->vertex];
int nb = 0;
Node p = node->father;
while (p != NULL) {
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
nb ++;
p = p->father;
}
return nb;
}
// Returns the leftmost deepest node
Node leftmostDeepestNode(Node root) {
Node p = root;
while (1) {
Node q = p->fbs;
while (q != NULL) {
if (q->height+1 == p->height)
break;
q = q->next;
}
if (q == NULL) return p;
p = q;
}
}
// the first ancestor whose father is marked with date (that is which is a node of the critical branch)
Node criticalAncestor(Node p, int date) {
while (p != NULL) {
if (p->father->date == date) break;
p = p->father;
}
return p;
}
void updateNbDeeperNeighbors(int nbDeeperN[], Graph g) {
for (int i = 0; i < g->n; i ++) {
nbDeeperN[i] = 0;
for (int *p = g->lists[i]; *p != NONE; p ++)
if (theNodes[*p]->depth > theNodes[i]->depth)
nbDeeperN[i] ++;
}
}
// Count at each level the number of critical nodes
void exploreMakeStats(Node node, int depth, int nbCritical[], int *max) {
Node q = node->fbs;
while (q != NULL) {
if (q->height+1 == node->height)
exploreMakeStats(q, depth+1, nbCritical, max);
q = q->next;
}
nbCritical[depth] ++;
if (*max < depth) *max = depth;
}
int makeStatsCriticalNodes(Node node, int nbCritical[]) {
int max = 0;
for (int i = 0; i < node->height; i ++)
nbCritical[i] = 0;
exploreMakeStats(node, 0, nbCritical, &max);
return max;
}
// update height after insertion of a new child or increase of the height of a child
int incHeightNodeUpdate(Node node, int height) { // node gets height among its children
if (node->height < height+1) {
node->height = height+1;
node->nbhmax = 1;
return 1;
}
if (node->height == height+1) node->nbhmax ++;
return 0;
}
// update height after removal of a child or decrease of the height of a child
int decHeightNodeUpdate(Node node, int height) { // node looses height among its children
if (node->height == height+1) {
if (node->nbhmax-- == 1)
if (initializeHeight(node))
return 1;
}
return 0;
}
// p looses a child of height height (removal or height decrease).
// Update p and propagate above if necessary.
void updateDecHeightOnBranch(Node p, int height) {
while (p != NULL) {
if ( ! decHeightNodeUpdate(p, height))
break;
p = p->father;
height ++;
}
}
void forceUpdateDecHeightOnBranch(Node p, int height) {
while (p != NULL) {
decHeightNodeUpdate(p, height);
p = p->father;
height ++;
}
}
// New child or child height increase
void updateIncHeightOnBranch(Node p, int height) {
while (p != NULL) {
if ( ! incHeightNodeUpdate(p, height))
break;
p = p->father;
height ++;
}
}
// insert node at last position in the list of children
void addChild(Node p, Node father) {
p->next = NULL;
p->father = father;
if (father->fbs == NULL) {
father->fbs = father->lbs = p;
p->prev = NULL;
}
else {
father->lbs->next = p;
p->prev = father->lbs;
father->lbs = p;
}
// updateIncHeightOnBranch(father, p->height); abandoned, it is better to update only once
incHeightNodeUpdate(father, p->height);
}
void addChildOLD(Node p, Node father) {
p->next = father->fbs;
if (father->fbs != NULL) father->fbs->prev = p;
p->prev = NULL;
father->fbs = p;
p->father = father;
// updateIncHeightOnBranch(father, p->height); abandoned, it is better to update only once
incHeightNodeUpdate(father, p->height);
}
int removeChild(Node p, Node father) {
if (father->fbs == p) {
father->fbs = p->next;
if (p->next != NULL) p->next->prev = NULL;
else father->lbs = NULL;
}
else {
p->prev->next = p->next;
if (p->next != NULL) p->next->prev = p->prev;
else father->lbs = p->prev;
}
//updateDecHeightOnBranch(father, p->height); abandoned, it is better to update only once
return decHeightNodeUpdate(father, p->height);
}
// Suppose father exists !!
void justRemoveChild(Node node) {
Node father = node->father;
if (node == father->fbs)
father->fbs = node->next;
else {
Node p = father->fbs;
while (p->next != node)
p = p->next;
p->next = node->next;
}
}
void addSibling(Node p, Node sibling) {
assert(sibling != NULL);
Node next = sibling->next;
p->next = next;
if (next != NULL) next->prev = p;
sibling->next = p;
p->prev = sibling;
p->father = sibling->father;
if (p->father != NULL)
incHeightNodeUpdate(p->father, p->height);
}
void connectSiblings(Node u, Node v) {
u->next = v;
v->next = NULL;
u->prev = NULL;
v->prev = u;
}
void connect3Siblings(Node u, Node v, Node w) {
u->next = v;
v->next = w;
w->next = NULL;
u->prev = NULL;
v->prev = u;
w->prev = v;
}
Node bottomNode;
Node makeSingleBranch(int S[], int n, int nbNInAB[], Graph g) {
// put at bottom those which have the fewer neighbors in A and B
if (1 && nbNInAB != NULL)
QSort1(S, nbNInAB, 0, n-1);
if (n == 0)
return NULL;
Node node, father;
bottomNode = node = theNodes[S[0]];
resetNode(bottomNode);
for (int i = 1; i < n; i ++) {
father = theNodes[S[i]];
resetNode(father);
addChild(node, father);
node = father;
}
return node;
}
// Make a single branch with nodes S[nbDV],...,S[n-1] with independent children S[0],...,S[nbDV-1]
Node makeSingleBranchWithDisconnectedVertices(int *S, int n, int nbDV, Graph g) {
if (n == 0)
return NULL;
Node node, father;
if (n == nbDV) nbDV --;
bottomNode = node = theNodes[S[nbDV]];
resetNode(bottomNode);
for (int i = 0; i < nbDV; i ++) {
Node child = theNodes[S[i]];
resetNode(child);
addChild(child, node);
}
for (int i = nbDV+1; i < n; i ++) {
father = theNodes[S[i]];
resetNode(father);
addChild(node, father);
node = father;
}
return node;
}
//
// Modifications
//
void printChildren(Node node) {
Node p = node->fbs;
printf("(%d) :: ", node->vertex);
while (p != NULL) {
printf("%d(%d),", p->vertex, p->father->vertex);
p = p->next;
}
printf("\n");
}
// pull up the node p. Then p becomes a child of its grandfather
int pullUp(Node p) {
Node father = p->father;
assert(father != NULL);
Node gfather = father->father;
assert(gfather != NULL);
int hbefore = gfather->height;
int trace = 0;
if (trace) { printf("\npull up %d:h=%d father=%d gfather=%d \n", p->vertex, p->height, father->vertex, gfather->vertex);printTree(gfather); }
int prevHeight = father->height;
if (removeChild(p, father))
decHeightNodeUpdate(gfather, prevHeight); // indeed gfather height is perhaps not good here
if (trace) { printf("pull up :: after remove %d :: father=%d gfather=%d\n", p->vertex, father->vertex, gfather->vertex);printTree(gfather);}
addChild(p, gfather);
if (trace) { printf("pull up :: after addChild :: father=%d gfather=%d \n", father->vertex, gfather->vertex);printTree(gfather); }
//printf(" ---> %d:h=%d father=%d gfather=%d\n", p->vertex, p->height, father->vertex, gfather->vertex);
return (gfather->height != hbefore);
}
//
// Forks: from a node u, the longest branch such that each node has a uniq child dependent with u
//
// Goal: the fork is not a critical node, but there are critical nodes on the path.
// Then, pushing down the source node as a child of the fork has as effect to pull up all subtrees
// connected on the path, in particular those that were critical.
Node theFork; // the fork
int forkIsCritical; // if the fork is a critical node, that is some leaves are at the maximal depth
Node theFirstSon; // the first dependent son in the branch
Node *dependentChildren = NULL; // The children of the fork that are dependent with the source node
int delta = 0; // Depth difference between nodes under the fork and the other nodes of the subtree
// If delta=1 the swap has no effect on the height of the subtree. If delta>1 the height decreases of 1.
int maxDepthForkSwaps = 33; // under this depth abandon
Node theRoot;
int searchSomeSwapsAtRandom = 1;
void searchForksSwaps(Node root, Graph g, int maxdepth) {
theRoot = root;
maxDepthForkSwaps = maxdepth;
//while (exploreAndSearchForks(root, 0, g))
exploreAndSearchForks(root, 0, g);
{
if (!verifyTree(root, 0)) {printf("swap fork error 00: node u\n"); exit(0); }
}
}
// NOTE:: it is not necessary to search the fork, it is sufficient to swap whenever delta > 1
int exploreAndSearchForks(Node node, int depth, Graph g) {
int len;
if (dependentChildren == NULL) dependentChildren = malloc(g->n* sizeof(Node));
if (node->fbs == NULL) return 0;
if (node->father != NULL) {
//printf("[%d] search fork for %d h=%d :\n", depth, node->vertex, node->height);
len = searchFork(node, g);
if ( (delta > 1) || ((delta == 1) && (rand()%2)) ) {
printf("[%d] fork swap h_u=%d h_fork=%d len=%d* delta=%d\n", depth, node->height, theFork->height, len, delta);
swapFork(node, theFork, g);
return 1;
}
//else printf("[%d] %d l=%d\n", depth, node->vertex, len);
}
if (depth > maxDepthForkSwaps)
return 0;
Node p = node->fbs;
while (p != NULL) {
if (p->height == node->height-1) { // ignore non critical nodes
exploreAndSearchForks(p, depth + 1, g);
//if ( ! exploreAndSearchForks(p, depth + 1, g)) return 0;
}
p = p->next;
}
return 1;
}
// Search the fork. delta is the difference of maximal depth considering just the nodes of
// the fork or all the nodes of the subtree u
int searchFork(Node u, Graph g) {
int len = 0, nbdep;
Node the;
int trace = 0;
theFork = u;
forkIsCritical = 1; // u is a critical node
theFirstSon = NULL;
delta = 0;
while (1) {
Node q = theFork->fbs;
nbdep = 0;
while (q != NULL) {
if ( ! independent(u->vertex, q, g)) {
dependentChildren[nbdep] = q;
nbdep++;
the = q;
if (q->height+1 < theFork->height) forkIsCritical = 0;
}
q = q->next;
}
dependentChildren[nbdep] = NULL;
if (nbdep == 0) return -len;
if (nbdep > 1) return len;
if (trace) printf("the=%d h_the=%d\n", the->vertex, the->height);
// A uniq dependent child, its height is the->height, delta is the difference
// between its height and the height of its father +1. If 0 this means that the is a
// critical node.
delta += (theFork->height-1-the->height);
if (theFirstSon == NULL) theFirstSon = the;
theFork = the;
len ++;
}
return 0;
}
// Push down the source node as a child of the fork. Children of the fork that are dependent with the
// source node are pushed down as children of the source. Suppose that u is not fork and not root.
int nbSwaps = 0;
Node swapFork(Node u, Node fork, Graph g) {
assert(u != fork);
assert(u->father != NULL); // this particular case should be considered a part (u must have a uniq son)
Node father = u->father;
int heightFather = father->height;
nbSwaps ++;
// remove u from father children
removeChild(u, father);
// updateHeights(father);
// printf("father height 1 : %d --> %d\n", heightFather, father->height);
// pull up u children (even theFirstSon)
Node q = u->fbs;
while (q != NULL) {
Node next = q->next;
removeChild(q, u);
addChild(q, father);
q = next;
}
// here u has no child
// updateHeights(father);
// printf("father height 2 : %d \n", father->height);
int forkHeight = fork->height;
// transfer fork children that are dependent with u, as new children of u
//resetNode(u);
//u->fbs = NULL; //p->lbs = p->next = p->prev = p->father = NULL;
//u->height = 1;
//u->nbhmax = 0;
if (1) for (Node *pp = dependentChildren; *pp != NULL; pp++) {
removeChild(*pp, fork);
addChild(*pp, u);
}
if (0) {
q = fork->fbs;
resetNode(u);
while (q != NULL) {
Node next = q->next;
if (!independent(u->vertex, q, g)) {
removeChild(q, fork);
addChild(q, u);
}
q = next;
}
}
//updateHeights(father);
//printf("father height 3 : %d \n", father->height);
// Add u as a child of fork
addChild(u, fork);
//updateHeights(father);
//printf("father height 4 : %d \n", father->height);
Node root;
while (u != NULL) {
root = u;
initializeHeight(u);
u = u->father;
}
if (!verifyTree(root, 0)) {printf("swap fork error 1: node u\n"); exit(0); }
//printf("father height :: %d --> %d\n", heightFather, father->height);
if (heightFather < father->height) {
printTree(father);
exit(0);
}
if (0) {
// Update...
printf("updating: \n");
printf(" u:%d h=%d\n", u->vertex, u->height);
printf(" fork:%d h=%d\n", fork->vertex, fork->height);
printf(" father:%d h=%d\n", father->vertex, father->height);
if (father->father != NULL)
printf(" father->father:%d h=%d\n", father->father->vertex, father->father->height);
initializeHeight(u);
initializeHeight(fork);
if (fork->height != forkHeight) {
updateIncHeightOnBranch(fork->father, fork->height);
}
if (!verifyTree(u, 0)) printf("swap fork verify 1: node u\n");
initializeHeight(father);
if (father->height < heightFather)
updateDecHeightOnBranch(father->father, heightFather);
printf(" u:%d h=%d\n", u->vertex, u->height);
printf(" fork:%d h=%d\n", fork->vertex, fork->height);
printf(" father:%d h=%d\n", father->vertex, father->height);
if (father->father != NULL)
printf(" father->father:%d h=%d\n", father->father->vertex, father->father->height);
if (!verifyTree(u->father, 0)) printf("swap fork verify 2: u->father\n");
if (!verifyTree(father, 0)) printf("swap fork verify 3: root\n");
if ((father->father != NULL) && (!verifyTree(father->father, 0))) printf("swap fork verify 4: root->father\n");
}
return father;
}
//
// Independent subtrees: computation
//
int indpdNbCalls = 0;
SET nodesInSubtrees = NULL;
void makeNodesInSubtrees(Node node) {
Node p = node->fbs;
while (p != NULL) {
makeNodesInSubtrees(p);
p = p->next;
}
ADDe(node->vertex, nodesInSubtrees);
}
int independent(int v, Node tree, Graph g) {
indpdNbCalls++;
if (nodesInSubtrees == NULL) nodesInSubtrees = allocSet(g->n);
clearSet(nodesInSubtrees);
makeNodesInSubtrees(tree);
LIST p = g->adj[v];
while (p != NULL) {
if (IN(p->val, nodesInSubtrees))
return 0;
p = p->suiv;
}
return 1;
}
//
// Sets of nodes (for swap in critical branches)
//
void makeAllSetsOfNodes(Node node, Graph g) {
Node q = node->fbs;
while (q != NULL) {
makeAllSetsOfNodes(q, g);
q = q->next;
}
if (node->nodes == NULL) node->nodes = allocSet(g->n);
else clearSet(node->nodes);
q = node->fbs;
while (q != NULL) {
addSet(q->nodes, node->nodes);
q = q->next;
}
}
// Construct sets of nodes for a given node, and for its children, suppose children sets do not exist
void exploreAndBuildSetOfNodes(Node p, SET V) {
ADDe(p->vertex, V);
Node q = p->fbs;
while (q != NULL) {
exploreAndBuildSetOfNodes(q, V);
q = q->next;
}
}
void buildSetOfNodes(Node p, Graph g) {
if (p->nodes != NULL) return;
p->nodes = allocSet(g->n);
SET V = p->nodes;
//clearSet(V);
ADDe(p->vertex, V);
Node q = p->fbs;
while (q != NULL) {
if (q->nodes == NULL) {
q->nodes = allocSet(g->n);
exploreAndBuildSetOfNodes(q, q->nodes);
}
addSet(q->nodes, V);
q = q->next;
}
}
void updateSetOfNodes(Node p, Graph g) {
if (p->nodes == NULL) p->nodes = allocSet(g->n);
SET V = p->nodes;
clearSet(V);
ADDe(p->vertex, V);
Node q = p->fbs;
while (q != NULL) {
assert (q->nodes != NULL);
addSet(q->nodes, V);
q = q->next;
}
}
void freeSetsOfNodes(Node nodes[], int nb) {
for (int i = 0; i < nb; i ++) {
free(nodes[i]->nodes);
nodes[i]->nodes = NULL;
}
}
//
// Verifications
//
int verifyNode(Node root) {
if (root == NULL)
return NONE;
int height = 1;
Node p = root->fbs;
while (p != NULL) {
if (p->height+1 > height)
height = p->height+1;
p = p->next;
}
if (root->height != height)
return height;
return NONE;
}
// Verify heights in nodes
int verifyTree(Node root, int depth) {
int height;
if (root == NULL)
return 1;
Node p = root->fbs;
int vertex;
if (p != NULL)
vertex = p->vertex;
while (p != NULL) {
if ( ! verifyTree(p, depth+1))
return 0;
p = p->next;
if ((p != NULL) && (p->vertex == vertex)) {
printf("children list loops !!\n");
exit(0);
}
}
height = verifyNode(root);
if (height != NONE) {
printf("bad height node %d at depth %d : height is %d should be %d\n", root->vertex, depth, root->height, height);
return 0;
}
return 1;
}
void exploreAndPrint(Node node, int depth) {
for (int i = 0; i < depth; i ++) printf(" -");
printf("[%d:%dx%d]\n", node->vertex, node->height, node->nbhmax);
Node p = node->fbs;
if (p == NULL)
return;
//printf("(");
while (p != NULL) {
exploreAndPrint(p, depth+1);
p = p->next;
if (p != NULL) printf(",");
}
//printf(")");
}
void printTree(Node node) {
exploreAndPrint(node, 0);
printf("\n");
}
int sizeForest(Node node) {
int nb = 0;
while (node != NULL) {
nb += 1+ sizeForest(node->fbs);
node = node->next;
}
return nb;
}
int sizeTree(Node node) {
if (node == NULL) return 0;
int nb = 1;
Node p = node->fbs;
while (p != NULL) {
nb += sizeTree(p);
p = p->next;
}
return nb;
}
int treeContains(int e, Node p) {
if (p == NULL) return 0;
if (p->vertex == e) return 1;
for (Node q = p->fbs; q != NULL; q = q->next)
if (treeContains(e, q))
return 1;
return 0;
}
int treeContainsNeighbors(int v, Node tree, Graph g) {
int nb = 0;
for (int *p = g->lists[v]; *p != NONE; p ++)
if (treeContains(*p, tree))
nb ++;
return nb;
}