Skip to content
Snippets Groups Projects

Update README.md

Closed Stephane Chavin requested to merge stephane.chavin-main-patch-76813 into main
1 file
+ 84
56
Compare changes
  • Side-by-side
  • Inline
+ 84
56
@@ -2,91 +2,119 @@
## Getting started
Ce git a été créé avec comme objectif une prise en main de YOLOV5 plus facile.
Il contient notamment un script permettant d'extraire les spectrogrammes de plusieurs enregistrements ([get_spectrogram.py](https://gitlab.lis-lab.fr/stephane.chavin/yolo-dyni/-/blob/main/get_spectrogram.py)), un script nécessaire à la conversion des annotations LabelMe vers YOLO ([labelme2yolo.py](https://gitlab.lis-lab.fr/stephane.chavin/yolo-dyni/-/blob/main/labelme2yolo.py)), un script pour convertir des annotations d'un dataframe vers YOLO ([get_train_annot.py](https://gitlab.lis-lab.fr/stephane.chavin/yolo-dyni/-/blob/main/get_train_annot.py/)), un script permettant de séparer le train et la validation de manière équilibré ([get_train_val.py](https://gitlab.lis-lab.fr/stephane.chavin/yolo-dyni/-/blob/main/get_train_val.py)) et un script qui permet de compiler les détections, d'un modèle entrainé, dans un dataframe.
To make it easy for you to get started with GitLab, here's a list of recommended next steps.
## Install
Already a pro? Just edit this README.md and make it your own. Want to make it easy? [Use the template at the bottom](#editing-this-readme)!
```bash
git clone https://gitlab.lis-lab.fr/stephane.chavin/yolo-dyni.git
## Add your files
```
- [ ] [Create](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-file) or [upload](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#upload-a-file) files
- [ ] [Add files using the command line](https://docs.gitlab.com/ee/gitlab-basics/add-file.html#add-a-file-using-the-command-line) or push an existing Git repository with the following command:
## Annoter des images :
<details>
<summary>extraction des spectrogrammes</summary>
```bash
python3 get_spectrogram.py -f NAME_OF_YOUR_FILE.csv -p PATH_TO_THE_DATA
```
cd existing_repo
git remote add origin https://gitlab.lis-lab.fr/stephane.chavin/yolo-dyni.git
git branch -M main
git push -uf origin main
**WARNING** : Il est important de modifier la valeur de DURATION et NB_IMG_PER_REC dans le code
```python
folder = 'Spectrogramme/'
DURATION = 8
NB_IMG_PER_REC = 30
```
## Integrate with your tools
</details>
<details>
<summary>LabelMe</summary>
- [ ] [Set up project integrations](https://gitlab.lis-lab.fr/stephane.chavin/yolo-dyni/-/settings/integrations)
* Installation de LabelMe
## Collaborate with your team
```bash
pip install labelme
```
- [ ] [Invite team members and collaborators](https://docs.gitlab.com/ee/user/project/members/)
- [ ] [Create a new merge request](https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html)
- [ ] [Automatically close issues from merge requests](https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically)
- [ ] [Enable merge request approvals](https://docs.gitlab.com/ee/user/project/merge_requests/approvals/)
- [ ] [Automatically merge when pipeline succeeds](https://docs.gitlab.com/ee/user/project/merge_requests/merge_when_pipeline_succeeds.html)
* Conversion des annotations LabelMe vers YOLO
## Test and Deploy
```bash
python3 labelme2yolo.py --input PATH_TO_THE_DATA --output DIRECTION_OF_THE_CONVERTED_FILES/FOLDER --ratio 0.X
```
Use the built-in continuous integration in GitLab.
**WARNING** : Il faut choisir un chiffre de 1 à 9 pour remplacer X et donc obtenir le ratio de train
- [ ] [Get started with GitLab CI/CD](https://docs.gitlab.com/ee/ci/quick_start/index.html)
- [ ] [Analyze your code for known vulnerabilities with Static Application Security Testing(SAST)](https://docs.gitlab.com/ee/user/application_security/sast/)
- [ ] [Deploy to Kubernetes, Amazon EC2, or Amazon ECS using Auto Deploy](https://docs.gitlab.com/ee/topics/autodevops/requirements.html)
- [ ] [Use pull-based deployments for improved Kubernetes management](https://docs.gitlab.com/ee/user/clusters/agent/)
- [ ] [Set up protected environments](https://docs.gitlab.com/ee/ci/environments/protected_environments.html)
</details>
***
# Editing this README
When you're ready to make this README your own, just edit this file and use the handy template below (or feel free to structure it however you want - this is just a starting point!). Thank you to [makeareadme.com](https://www.makeareadme.com/) for this template.
## Créer un dataset à partir d'annotations sur un dataframe :
## Suggestions for a good README
Every project is different, so consider which of these sections apply to yours. The sections used in the template are suggestions for most open source projects. Also keep in mind that while a README can be too long and detailed, too long is better than too short. If you think your README is too long, consider utilizing another form of documentation rather than cutting out information.
<details>
<summary>Conversion des annotations</summary>
## Name
Choose a self-explaining name for your project.
* Conversion des annotations (**temps fréquence**) au format YOLO (**label x y w h**)
## Description
Let people know what your project can do specifically. Provide context and add a link to any reference visitors might be unfamiliar with. A list of Features or a Background subsection can also be added here. If there are alternatives to your project, this is a good place to list differentiating factors.
```bash
python3 get_train_annot.py -f PATH_TO_THE_FILE.csv -p PATH_TO_DATA -d DIRECTION_OF_THE_TXT_AND_IMG -m {uniform or personalized}
```
## Badges
On some READMEs, you may see small images that convey metadata, such as whether or not all the tests are passing for the project. You can use Shields to add some to your README. Many services also have instructions for adding a badge.
* Vérifier le bon placement des bounding box :
## Visuals
Depending on what you are making, it can be a good idea to include screenshots or even a video (you'll frequently see GIFs rather than actual videos). Tools like ttygif can help, but check out Asciinema for a more sophisticated method.
```bash
python3 get_train_annot.py -f PATH_TO_THE_FILE.csv -p PATH_TO_DATA -d DIRECTION_OF_THE_TXT_AND_IMG -m {uniform or personalized} --export
```
## Installation
Within a particular ecosystem, there may be a common way of installing things, such as using Yarn, NuGet, or Homebrew. However, consider the possibility that whoever is reading your README is a novice and would like more guidance. Listing specific steps helps remove ambiguity and gets people to using your project as quickly as possible. If it only runs in a specific context like a particular programming language version or operating system or has dependencies that have to be installed manually, also add a Requirements subsection.
*Ajouter **--export** permet d'exporter les spectrogrammes avec les bounding box placées par dessus*
## Usage
Use examples liberally, and show the expected output if you can. It's helpful to have inline the smallest example of usage that you can demonstrate, while providing links to more sophisticated examples if they are too long to reasonably include in the README.
</details>
## Support
Tell people where they can go to for help. It can be any combination of an issue tracker, a chat room, an email address, etc.
<details>
<summary>Séparation train/val</summary>
## Roadmap
If you have ideas for releases in the future, it is a good idea to list them in the README.
```bash
python3 get_train_val.py -r RATIO -p PATH_TO_DATA -d DIRECTION_OF_THE_RESULT
```
</details>
## Contributing
State if you are open to contributions and what your requirements are for accepting them.
## Entrainemnet et Détection YOLO
For people who want to make changes to your project, it's helpful to have some documentation on how to get started. Perhaps there is a script that they should run or some environment variables that they need to set. Make these steps explicit. These instructions could also be useful to your future self.
* install YOLOV5
You can also document commands to lint the code or run tests. These steps help to ensure high code quality and reduce the likelihood that the changes inadvertently break something. Having instructions for running tests is especially helpful if it requires external setup, such as starting a Selenium server for testing in a browser.
```bash
cd yolo-dyni
git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt
```
<details>
<summary>Entrainement</summary>
## Authors and acknowledgment
Show your appreciation to those who have contributed to the project.
```bash
python3 yolo5/train.py --img IMG_SIZE --batch BATCH_SIZE --EPOCHS NB_EPOCHS --data DIRECTION_OF_THE_RESULT/custom_data.yaml --weights yolov5/weights/yolov5s.pt --cache
```
</details>
<details>
<summary>Détection</summary>
* Sauvegarde les annotations en .txt ainsi que les images avec les bounding box dessus
```bash
python3 detect.py --weights yolov5/runs/train/EXP_NB/weights/best.pt --img IMG_SIZE --conf 0.X --source PATH_TO_SPECTROGRAM_TO_DETECT --save-txt
```
**WARNING** : Il faut adapter EXP_NB, qui correspond au numéro de l'entrainement *(exp1 pour le premier entrainement)*
--conf correspond à la confiance toléré par YOLO, c'est-à-dire à partir de quelle confiance d'une détection cette dernière est conservée, il faut donc modifier la valeur de X pour faire varier cette tolérence *(minimum : 0.0, maximum : 1)*
## License
For open source projects, say how it is licensed.
* Sauvegarde les annotations en .txt seulement avec la confiance de chaque détections
```bash
python3 detect.py --weights yolov5/runs/train/EXP_NB/weights/best.pt --img IMG_SIZE --conf 0.XX --source PATH_TO_SPECTROGRAM_TO_DETECT --save-txt --nosave --save-conf
```
</details>
***
## Project status
If you have run out of energy or time for your project, put a note at the top of the README saying that development has slowed down or stopped completely. Someone may choose to fork your project or volunteer to step in as a maintainer or owner, allowing your project to keep going. You can also make an explicit request for maintainers.
Loading