Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
RAVEN2YOLO
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Stephane Chavin
RAVEN2YOLO
Commits
920685dd
Commit
920685dd
authored
2 years ago
by
Stephane Chavin
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
7fbee3f2
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
yolov5/models/utils/loggers/comet/hpo.py
+118
-0
118 additions, 0 deletions
yolov5/models/utils/loggers/comet/hpo.py
with
118 additions
and
0 deletions
yolov5/models/utils/loggers/comet/hpo.py
0 → 100644
+
118
−
0
View file @
920685dd
import
argparse
import
json
import
logging
import
os
import
sys
from
pathlib
import
Path
import
comet_ml
logger
=
logging
.
getLogger
(
__name__
)
FILE
=
Path
(
__file__
).
resolve
()
ROOT
=
FILE
.
parents
[
3
]
# YOLOv5 root directory
if
str
(
ROOT
)
not
in
sys
.
path
:
sys
.
path
.
append
(
str
(
ROOT
))
# add ROOT to PATH
from
train
import
train
from
utils.callbacks
import
Callbacks
from
utils.general
import
increment_path
from
utils.torch_utils
import
select_device
# Project Configuration
config
=
comet_ml
.
config
.
get_config
()
COMET_PROJECT_NAME
=
config
.
get_string
(
os
.
getenv
(
'
COMET_PROJECT_NAME
'
),
'
comet.project_name
'
,
default
=
'
yolov5
'
)
def
get_args
(
known
=
False
):
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'
--weights
'
,
type
=
str
,
default
=
ROOT
/
'
yolov5s.pt
'
,
help
=
'
initial weights path
'
)
parser
.
add_argument
(
'
--cfg
'
,
type
=
str
,
default
=
''
,
help
=
'
model.yaml path
'
)
parser
.
add_argument
(
'
--data
'
,
type
=
str
,
default
=
ROOT
/
'
data/coco128.yaml
'
,
help
=
'
dataset.yaml path
'
)
parser
.
add_argument
(
'
--hyp
'
,
type
=
str
,
default
=
ROOT
/
'
data/hyps/hyp.scratch-low.yaml
'
,
help
=
'
hyperparameters path
'
)
parser
.
add_argument
(
'
--epochs
'
,
type
=
int
,
default
=
300
,
help
=
'
total training epochs
'
)
parser
.
add_argument
(
'
--batch-size
'
,
type
=
int
,
default
=
16
,
help
=
'
total batch size for all GPUs, -1 for autobatch
'
)
parser
.
add_argument
(
'
--imgsz
'
,
'
--img
'
,
'
--img-size
'
,
type
=
int
,
default
=
640
,
help
=
'
train, val image size (pixels)
'
)
parser
.
add_argument
(
'
--rect
'
,
action
=
'
store_true
'
,
help
=
'
rectangular training
'
)
parser
.
add_argument
(
'
--resume
'
,
nargs
=
'
?
'
,
const
=
True
,
default
=
False
,
help
=
'
resume most recent training
'
)
parser
.
add_argument
(
'
--nosave
'
,
action
=
'
store_true
'
,
help
=
'
only save final checkpoint
'
)
parser
.
add_argument
(
'
--noval
'
,
action
=
'
store_true
'
,
help
=
'
only validate final epoch
'
)
parser
.
add_argument
(
'
--noautoanchor
'
,
action
=
'
store_true
'
,
help
=
'
disable AutoAnchor
'
)
parser
.
add_argument
(
'
--noplots
'
,
action
=
'
store_true
'
,
help
=
'
save no plot files
'
)
parser
.
add_argument
(
'
--evolve
'
,
type
=
int
,
nargs
=
'
?
'
,
const
=
300
,
help
=
'
evolve hyperparameters for x generations
'
)
parser
.
add_argument
(
'
--bucket
'
,
type
=
str
,
default
=
''
,
help
=
'
gsutil bucket
'
)
parser
.
add_argument
(
'
--cache
'
,
type
=
str
,
nargs
=
'
?
'
,
const
=
'
ram
'
,
help
=
'
--cache images in
"
ram
"
(default) or
"
disk
"'
)
parser
.
add_argument
(
'
--image-weights
'
,
action
=
'
store_true
'
,
help
=
'
use weighted image selection for training
'
)
parser
.
add_argument
(
'
--device
'
,
default
=
''
,
help
=
'
cuda device, i.e. 0 or 0,1,2,3 or cpu
'
)
parser
.
add_argument
(
'
--multi-scale
'
,
action
=
'
store_true
'
,
help
=
'
vary img-size +/- 50%%
'
)
parser
.
add_argument
(
'
--single-cls
'
,
action
=
'
store_true
'
,
help
=
'
train multi-class data as single-class
'
)
parser
.
add_argument
(
'
--optimizer
'
,
type
=
str
,
choices
=
[
'
SGD
'
,
'
Adam
'
,
'
AdamW
'
],
default
=
'
SGD
'
,
help
=
'
optimizer
'
)
parser
.
add_argument
(
'
--sync-bn
'
,
action
=
'
store_true
'
,
help
=
'
use SyncBatchNorm, only available in DDP mode
'
)
parser
.
add_argument
(
'
--workers
'
,
type
=
int
,
default
=
8
,
help
=
'
max dataloader workers (per RANK in DDP mode)
'
)
parser
.
add_argument
(
'
--project
'
,
default
=
ROOT
/
'
runs/train
'
,
help
=
'
save to project/name
'
)
parser
.
add_argument
(
'
--name
'
,
default
=
'
exp
'
,
help
=
'
save to project/name
'
)
parser
.
add_argument
(
'
--exist-ok
'
,
action
=
'
store_true
'
,
help
=
'
existing project/name ok, do not increment
'
)
parser
.
add_argument
(
'
--quad
'
,
action
=
'
store_true
'
,
help
=
'
quad dataloader
'
)
parser
.
add_argument
(
'
--cos-lr
'
,
action
=
'
store_true
'
,
help
=
'
cosine LR scheduler
'
)
parser
.
add_argument
(
'
--label-smoothing
'
,
type
=
float
,
default
=
0.0
,
help
=
'
Label smoothing epsilon
'
)
parser
.
add_argument
(
'
--patience
'
,
type
=
int
,
default
=
100
,
help
=
'
EarlyStopping patience (epochs without improvement)
'
)
parser
.
add_argument
(
'
--freeze
'
,
nargs
=
'
+
'
,
type
=
int
,
default
=
[
0
],
help
=
'
Freeze layers: backbone=10, first3=0 1 2
'
)
parser
.
add_argument
(
'
--save-period
'
,
type
=
int
,
default
=-
1
,
help
=
'
Save checkpoint every x epochs (disabled if < 1)
'
)
parser
.
add_argument
(
'
--seed
'
,
type
=
int
,
default
=
0
,
help
=
'
Global training seed
'
)
parser
.
add_argument
(
'
--local_rank
'
,
type
=
int
,
default
=-
1
,
help
=
'
Automatic DDP Multi-GPU argument, do not modify
'
)
# Weights & Biases arguments
parser
.
add_argument
(
'
--entity
'
,
default
=
None
,
help
=
'
W&B: Entity
'
)
parser
.
add_argument
(
'
--upload_dataset
'
,
nargs
=
'
?
'
,
const
=
True
,
default
=
False
,
help
=
'
W&B: Upload data,
"
val
"
option
'
)
parser
.
add_argument
(
'
--bbox_interval
'
,
type
=
int
,
default
=-
1
,
help
=
'
W&B: Set bounding-box image logging interval
'
)
parser
.
add_argument
(
'
--artifact_alias
'
,
type
=
str
,
default
=
'
latest
'
,
help
=
'
W&B: Version of dataset artifact to use
'
)
# Comet Arguments
parser
.
add_argument
(
'
--comet_optimizer_config
'
,
type
=
str
,
help
=
'
Comet: Path to a Comet Optimizer Config File.
'
)
parser
.
add_argument
(
'
--comet_optimizer_id
'
,
type
=
str
,
help
=
'
Comet: ID of the Comet Optimizer sweep.
'
)
parser
.
add_argument
(
'
--comet_optimizer_objective
'
,
type
=
str
,
help
=
"
Comet: Set to
'
minimize
'
or
'
maximize
'
.
"
)
parser
.
add_argument
(
'
--comet_optimizer_metric
'
,
type
=
str
,
help
=
'
Comet: Metric to Optimize.
'
)
parser
.
add_argument
(
'
--comet_optimizer_workers
'
,
type
=
int
,
default
=
1
,
help
=
'
Comet: Number of Parallel Workers to use with the Comet Optimizer.
'
)
return
parser
.
parse_known_args
()[
0
]
if
known
else
parser
.
parse_args
()
def
run
(
parameters
,
opt
):
hyp_dict
=
{
k
:
v
for
k
,
v
in
parameters
.
items
()
if
k
not
in
[
'
epochs
'
,
'
batch_size
'
]}
opt
.
save_dir
=
str
(
increment_path
(
Path
(
opt
.
project
)
/
opt
.
name
,
exist_ok
=
opt
.
exist_ok
or
opt
.
evolve
))
opt
.
batch_size
=
parameters
.
get
(
'
batch_size
'
)
opt
.
epochs
=
parameters
.
get
(
'
epochs
'
)
device
=
select_device
(
opt
.
device
,
batch_size
=
opt
.
batch_size
)
train
(
hyp_dict
,
opt
,
device
,
callbacks
=
Callbacks
())
if
__name__
==
'
__main__
'
:
opt
=
get_args
(
known
=
True
)
opt
.
weights
=
str
(
opt
.
weights
)
opt
.
cfg
=
str
(
opt
.
cfg
)
opt
.
data
=
str
(
opt
.
data
)
opt
.
project
=
str
(
opt
.
project
)
optimizer_id
=
os
.
getenv
(
'
COMET_OPTIMIZER_ID
'
)
if
optimizer_id
is
None
:
with
open
(
opt
.
comet_optimizer_config
)
as
f
:
optimizer_config
=
json
.
load
(
f
)
optimizer
=
comet_ml
.
Optimizer
(
optimizer_config
)
else
:
optimizer
=
comet_ml
.
Optimizer
(
optimizer_id
)
opt
.
comet_optimizer_id
=
optimizer
.
id
status
=
optimizer
.
status
()
opt
.
comet_optimizer_objective
=
status
[
'
spec
'
][
'
objective
'
]
opt
.
comet_optimizer_metric
=
status
[
'
spec
'
][
'
metric
'
]
logger
.
info
(
'
COMET INFO: Starting Hyperparameter Sweep
'
)
for
parameter
in
optimizer
.
get_parameters
():
run
(
parameter
[
'
parameters
'
],
opt
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment