Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
RAVEN2YOLO
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Stephane Chavin
RAVEN2YOLO
Commits
733948bc
Commit
733948bc
authored
2 years ago
by
Stephane Chavin
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
8931449e
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
yolov5/models/utils/segment/general.py
+160
-0
160 additions, 0 deletions
yolov5/models/utils/segment/general.py
with
160 additions
and
0 deletions
yolov5/models/utils/segment/general.py
0 → 100644
+
160
−
0
View file @
733948bc
import
cv2
import
numpy
as
np
import
torch
import
torch.nn.functional
as
F
def
crop_mask
(
masks
,
boxes
):
"""
"
Crop
"
predicted masks by zeroing out everything not in the predicted bbox.
Vectorized by Chong (thanks Chong).
Args:
- masks should be a size [h, w, n] tensor of masks
- boxes should be a size [n, 4] tensor of bbox coords in relative point form
"""
n
,
h
,
w
=
masks
.
shape
x1
,
y1
,
x2
,
y2
=
torch
.
chunk
(
boxes
[:,
:,
None
],
4
,
1
)
# x1 shape(1,1,n)
r
=
torch
.
arange
(
w
,
device
=
masks
.
device
,
dtype
=
x1
.
dtype
)[
None
,
None
,
:]
# rows shape(1,w,1)
c
=
torch
.
arange
(
h
,
device
=
masks
.
device
,
dtype
=
x1
.
dtype
)[
None
,
:,
None
]
# cols shape(h,1,1)
return
masks
*
((
r
>=
x1
)
*
(
r
<
x2
)
*
(
c
>=
y1
)
*
(
c
<
y2
))
def
process_mask_upsample
(
protos
,
masks_in
,
bboxes
,
shape
):
"""
Crop after upsample.
protos: [mask_dim, mask_h, mask_w]
masks_in: [n, mask_dim], n is number of masks after nms
bboxes: [n, 4], n is number of masks after nms
shape: input_image_size, (h, w)
return: h, w, n
"""
c
,
mh
,
mw
=
protos
.
shape
# CHW
masks
=
(
masks_in
@
protos
.
float
().
view
(
c
,
-
1
)).
sigmoid
().
view
(
-
1
,
mh
,
mw
)
masks
=
F
.
interpolate
(
masks
[
None
],
shape
,
mode
=
'
bilinear
'
,
align_corners
=
False
)[
0
]
# CHW
masks
=
crop_mask
(
masks
,
bboxes
)
# CHW
return
masks
.
gt_
(
0.5
)
def
process_mask
(
protos
,
masks_in
,
bboxes
,
shape
,
upsample
=
False
):
"""
Crop before upsample.
proto_out: [mask_dim, mask_h, mask_w]
out_masks: [n, mask_dim], n is number of masks after nms
bboxes: [n, 4], n is number of masks after nms
shape:input_image_size, (h, w)
return: h, w, n
"""
c
,
mh
,
mw
=
protos
.
shape
# CHW
ih
,
iw
=
shape
masks
=
(
masks_in
@
protos
.
float
().
view
(
c
,
-
1
)).
sigmoid
().
view
(
-
1
,
mh
,
mw
)
# CHW
downsampled_bboxes
=
bboxes
.
clone
()
downsampled_bboxes
[:,
0
]
*=
mw
/
iw
downsampled_bboxes
[:,
2
]
*=
mw
/
iw
downsampled_bboxes
[:,
3
]
*=
mh
/
ih
downsampled_bboxes
[:,
1
]
*=
mh
/
ih
masks
=
crop_mask
(
masks
,
downsampled_bboxes
)
# CHW
if
upsample
:
masks
=
F
.
interpolate
(
masks
[
None
],
shape
,
mode
=
'
bilinear
'
,
align_corners
=
False
)[
0
]
# CHW
return
masks
.
gt_
(
0.5
)
def
process_mask_native
(
protos
,
masks_in
,
bboxes
,
shape
):
"""
Crop after upsample.
protos: [mask_dim, mask_h, mask_w]
masks_in: [n, mask_dim], n is number of masks after nms
bboxes: [n, 4], n is number of masks after nms
shape: input_image_size, (h, w)
return: h, w, n
"""
c
,
mh
,
mw
=
protos
.
shape
# CHW
masks
=
(
masks_in
@
protos
.
float
().
view
(
c
,
-
1
)).
sigmoid
().
view
(
-
1
,
mh
,
mw
)
gain
=
min
(
mh
/
shape
[
0
],
mw
/
shape
[
1
])
# gain = old / new
pad
=
(
mw
-
shape
[
1
]
*
gain
)
/
2
,
(
mh
-
shape
[
0
]
*
gain
)
/
2
# wh padding
top
,
left
=
int
(
pad
[
1
]),
int
(
pad
[
0
])
# y, x
bottom
,
right
=
int
(
mh
-
pad
[
1
]),
int
(
mw
-
pad
[
0
])
masks
=
masks
[:,
top
:
bottom
,
left
:
right
]
masks
=
F
.
interpolate
(
masks
[
None
],
shape
,
mode
=
'
bilinear
'
,
align_corners
=
False
)[
0
]
# CHW
masks
=
crop_mask
(
masks
,
bboxes
)
# CHW
return
masks
.
gt_
(
0.5
)
def
scale_image
(
im1_shape
,
masks
,
im0_shape
,
ratio_pad
=
None
):
"""
img1_shape: model input shape, [h, w]
img0_shape: origin pic shape, [h, w, 3]
masks: [h, w, num]
"""
# Rescale coordinates (xyxy) from im1_shape to im0_shape
if
ratio_pad
is
None
:
# calculate from im0_shape
gain
=
min
(
im1_shape
[
0
]
/
im0_shape
[
0
],
im1_shape
[
1
]
/
im0_shape
[
1
])
# gain = old / new
pad
=
(
im1_shape
[
1
]
-
im0_shape
[
1
]
*
gain
)
/
2
,
(
im1_shape
[
0
]
-
im0_shape
[
0
]
*
gain
)
/
2
# wh padding
else
:
pad
=
ratio_pad
[
1
]
top
,
left
=
int
(
pad
[
1
]),
int
(
pad
[
0
])
# y, x
bottom
,
right
=
int
(
im1_shape
[
0
]
-
pad
[
1
]),
int
(
im1_shape
[
1
]
-
pad
[
0
])
if
len
(
masks
.
shape
)
<
2
:
raise
ValueError
(
f
'"
len of masks shape
"
should be 2 or 3, but got
{
len
(
masks
.
shape
)
}
'
)
masks
=
masks
[
top
:
bottom
,
left
:
right
]
# masks = masks.permute(2, 0, 1).contiguous()
# masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0]
# masks = masks.permute(1, 2, 0).contiguous()
masks
=
cv2
.
resize
(
masks
,
(
im0_shape
[
1
],
im0_shape
[
0
]))
if
len
(
masks
.
shape
)
==
2
:
masks
=
masks
[:,
:,
None
]
return
masks
def
mask_iou
(
mask1
,
mask2
,
eps
=
1e-7
):
"""
mask1: [N, n] m1 means number of predicted objects
mask2: [M, n] m2 means number of gt objects
Note: n means image_w x image_h
return: masks iou, [N, M]
"""
intersection
=
torch
.
matmul
(
mask1
,
mask2
.
t
()).
clamp
(
0
)
union
=
(
mask1
.
sum
(
1
)[:,
None
]
+
mask2
.
sum
(
1
)[
None
])
-
intersection
# (area1 + area2) - intersection
return
intersection
/
(
union
+
eps
)
def
masks_iou
(
mask1
,
mask2
,
eps
=
1e-7
):
"""
mask1: [N, n] m1 means number of predicted objects
mask2: [N, n] m2 means number of gt objects
Note: n means image_w x image_h
return: masks iou, (N, )
"""
intersection
=
(
mask1
*
mask2
).
sum
(
1
).
clamp
(
0
)
# (N, )
union
=
(
mask1
.
sum
(
1
)
+
mask2
.
sum
(
1
))[
None
]
-
intersection
# (area1 + area2) - intersection
return
intersection
/
(
union
+
eps
)
def
masks2segments
(
masks
,
strategy
=
'
largest
'
):
# Convert masks(n,160,160) into segments(n,xy)
segments
=
[]
for
x
in
masks
.
int
().
cpu
().
numpy
().
astype
(
'
uint8
'
):
c
=
cv2
.
findContours
(
x
,
cv2
.
RETR_EXTERNAL
,
cv2
.
CHAIN_APPROX_SIMPLE
)[
0
]
if
c
:
if
strategy
==
'
concat
'
:
# concatenate all segments
c
=
np
.
concatenate
([
x
.
reshape
(
-
1
,
2
)
for
x
in
c
])
elif
strategy
==
'
largest
'
:
# select largest segment
c
=
np
.
array
(
c
[
np
.
array
([
len
(
x
)
for
x
in
c
]).
argmax
()]).
reshape
(
-
1
,
2
)
else
:
c
=
np
.
zeros
((
0
,
2
))
# no segments found
segments
.
append
(
c
.
astype
(
'
float32
'
))
return
segments
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment