Skip to content
Snippets Groups Projects
Select Git revision
  • 58cdb90ea7eb37993449763406abf3a7fa537fa8
  • master default protected
  • v1.1
  • operations
  • v1.1.2
  • v1.1.1
  • v1.1.0
  • v1.0.4
  • v1.0.3
  • v1.0.2
  • v1.0.0
  • v1.0.1
12 results

setup.py

Blame
  • Networks.py 15.40 KiB
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import Features
    import Transition
    
    ################################################################################
    def createNetwork(name, dicts, outputSizes, incremental) :
      featureFunctionAll = "b.-2 b.-1 b.0 b.1 b.2 s.0 s.1 s.2 s.0.0 s.0.-1 s.0.1 s.1.0 s.1.-1 s.1.1 s.2.0 s.2.-1 s.2.1"
      featureFunctionNostack = "b.-2 b.-1 b.0 b.1 b.2"
      historyNb = 10
      historyPopNb = 5
      suffixSize = 4
      prefixSize = 4
      hiddenSize = 1600
      columns = ["UPOS", "FORM"]
    
      if name == "base" :
        return BaseNet(dicts, outputSizes, incremental, featureFunctionAll, historyNb, historyPopNb, suffixSize, prefixSize, columns, hiddenSize)
      elif name == "semi" :
        return SemiNet(dicts, outputSizes, incremental, featureFunctionAll, historyNb, suffixSize, prefixSize, columns, hiddenSize)
      elif name == "big" :
        return BaseNet(dicts, outputSizes, incremental, featureFunctionAll, historyNb, suffixSize, prefixSize, columns, hiddenSize*2)
      elif name == "lstm" :
        return LSTMNet(dicts, outputSizes, incremental)
      elif name == "separated" :
        return SeparatedNet(dicts, outputSizes, incremental, featureFunctionAll, historyNb, historyPopNb, suffixSize, prefixSize, columns, hiddenSize)
      elif name == "tagger" :
        return BaseNet(dicts, outputSizes, incremental, featureFunctionNostack, historyNb, historyPopNb, suffixSize, prefixSize, columns, hiddenSize)
    
      raise Exception("Unknown network name '%s'"%name)
    ################################################################################
    
    ################################################################################
    class BaseNet(nn.Module):
      def __init__(self, dicts, outputSizes, incremental, featureFunction, historyNb, historyPopNb, suffixSize, prefixSize, columns, hiddenSize) :
        super().__init__()
        self.dummyParam = nn.Parameter(torch.empty(0), requires_grad=False)
    
        self.incremental = incremental
        self.state = 0
        self.featureFunction = featureFunction
        self.historyNb = historyNb
        self.historyPopNb = historyPopNb
        self.suffixSize = suffixSize
        self.prefixSize = prefixSize
        self.columns = columns
    
        self.embSize = 64
        self.nbTargets = len(self.featureFunction.split())
        self.inputSize = len(self.columns)*self.nbTargets+self.historyNb+self.historyPopNb+self.suffixSize+self.prefixSize
        self.outputSizes = outputSizes
        for name in dicts.dicts :
          self.add_module("emb_"+name, nn.Embedding(len(dicts.dicts[name]), self.embSize))
        self.fc1 = nn.Linear(self.inputSize * self.embSize, hiddenSize)
        for i in range(len(outputSizes)) :
          self.add_module("output_"+str(i), nn.Linear(hiddenSize+1, outputSizes[i]))
        self.dropout = nn.Dropout(0.3)
    
        self.apply(self.initWeights)
    
      def setState(self, state) :
        self.state = state
    
      def forward(self, x) :
        embeddings = []
        canBack = x[...,0:1]
        x = x[...,1:]
    
        for i in range(len(self.columns)) :
          embeddings.append(getattr(self, "emb_"+self.columns[i])(x[...,i*self.nbTargets:(i+1)*self.nbTargets]))
        y = torch.cat(embeddings,-1).view(x.size(0),-1)
        curIndex = len(self.columns)*self.nbTargets
        if self.historyNb > 0 :
          historyEmb = getattr(self, "emb_HISTORY")(x[...,curIndex:curIndex+self.historyNb]).view(x.size(0),-1)
          y = torch.cat([y, historyEmb],-1)
          curIndex = curIndex+self.historyNb
        if self.historyPopNb > 0 :
          historyPopEmb = getattr(self, "emb_HISTORY")(x[...,curIndex:curIndex+self.historyPopNb]).view(x.size(0),-1)
          y = torch.cat([y, historyPopEmb],-1)
          curIndex = curIndex+self.historyPopNb
        if self.prefixSize > 0 :
          prefixEmb = getattr(self, "emb_LETTER")(x[...,curIndex:curIndex+self.prefixSize]).view(x.size(0),-1)
          y = torch.cat([y, prefixEmb],-1)
          curIndex = curIndex+self.prefixSize
        if self.suffixSize > 0 :
          suffixEmb = getattr(self, "emb_LETTER")(x[...,curIndex:curIndex+self.suffixSize]).view(x.size(0),-1)
          y = torch.cat([y, suffixEmb],-1)
          curIndex = curIndex+self.suffixSize
        y = self.dropout(y)
        y = F.relu(self.dropout(self.fc1(y)))
        y = torch.cat([y,canBack], 1)
        y = getattr(self, "output_"+str(self.state))(y)
        return y
    
      def currentDevice(self) :
        return self.dummyParam.device
    
      def initWeights(self,m) :
        if type(m) == nn.Linear:
          torch.nn.init.xavier_uniform_(m.weight)
          m.bias.data.fill_(0.01)
    
      def extractFeatures(self, dicts, config) :
        colsValues = Features.extractColsFeatures(dicts, config, self.featureFunction, self.columns, self.incremental)
        historyValues = Features.extractHistoryFeatures(dicts, config, self.historyNb)
        historyPopValues = Features.extractHistoryPopFeatures(dicts, config, self.historyPopNb)
        prefixValues = Features.extractPrefixFeatures(dicts, config, self.prefixSize)
        suffixValues = Features.extractSuffixFeatures(dicts, config, self.suffixSize)
        backAction = torch.ones(1, dtype=torch.int) if Transition.Transition("BACK 1").appliable(config) else torch.zeros(1, dtype=torch.int)
        return torch.cat([backAction, colsValues, historyValues, historyPopValues, prefixValues, suffixValues])
    ################################################################################
    
    ################################################################################
    class SemiNet(nn.Module):
      def __init__(self, dicts, outputSizes, incremental, featureFunction, historyNb, suffixSize, prefixSize, columns, hiddenSize) :
        super().__init__()
        self.dummyParam = nn.Parameter(torch.empty(0), requires_grad=False)
    
        self.incremental = incremental
        self.state = 0
        self.featureFunction = featureFunction
        self.historyNb = historyNb
        self.suffixSize = suffixSize
        self.prefixSize = prefixSize
        self.columns = columns
    
        self.embSize = 64
        self.nbTargets = len(self.featureFunction.split())
        self.inputSize = len(self.columns)*self.nbTargets+self.historyNb+self.suffixSize+self.prefixSize
        self.outputSizes = outputSizes
        for name in dicts.dicts :
          self.add_module("emb_"+name, nn.Embedding(len(dicts.dicts[name]), self.embSize))
        self.fc1 = nn.Linear(self.inputSize * self.embSize, hiddenSize)
        for i in range(len(outputSizes)) :
          self.add_module("output_hidden_"+str(i), nn.Linear(hiddenSize, hiddenSize))
          self.add_module("output_"+str(i), nn.Linear(hiddenSize+1, outputSizes[i]))
        self.dropout = nn.Dropout(0.3)
    
        self.apply(self.initWeights)
    
      def setState(self, state) :
        self.state = state
    
      def forward(self, x) :
        embeddings = []
        canBack = x[...,0:1]
        x = x[...,1:]
        for i in range(len(self.columns)) :
          embeddings.append(getattr(self, "emb_"+self.columns[i])(x[...,i*self.nbTargets:(i+1)*self.nbTargets]))
        y = torch.cat(embeddings,-1).view(x.size(0),-1)
        curIndex = len(self.columns)*self.nbTargets
        if self.historyNb > 0 :
          historyEmb = getattr(self, "emb_HISTORY")(x[...,curIndex:curIndex+self.historyNb]).view(x.size(0),-1)
          y = torch.cat([y, historyEmb],-1)
          curIndex = curIndex+self.historyNb
        if self.prefixSize > 0 :
          prefixEmb = getattr(self, "emb_LETTER")(x[...,curIndex:curIndex+self.prefixSize]).view(x.size(0),-1)
          y = torch.cat([y, prefixEmb],-1)
          curIndex = curIndex+self.prefixSize
        if self.suffixSize > 0 :
          suffixEmb = getattr(self, "emb_LETTER")(x[...,curIndex:curIndex+self.suffixSize]).view(x.size(0),-1)
          y = torch.cat([y, suffixEmb],-1)
          curIndex = curIndex+self.suffixSize
        y = self.dropout(y)
        y = F.relu(self.dropout(self.fc1(y)))
        y = self.dropout(getattr(self, "output_hidden_"+str(self.state))(y))
        y = torch.cat([y,canBack], 1)
        y = getattr(self, "output_"+str(self.state))(y)
        return y
    
      def currentDevice(self) :
        return self.dummyParam.device
    
      def initWeights(self,m) :
        if type(m) == nn.Linear:
          torch.nn.init.xavier_uniform_(m.weight)
          m.bias.data.fill_(0.01)
    
      def extractFeatures(self, dicts, config) :
        colsValues = Features.extractColsFeatures(dicts, config, self.featureFunction, self.columns, self.incremental)
        historyValues = Features.extractHistoryFeatures(dicts, config, self.historyNb)
        prefixValues = Features.extractPrefixFeatures(dicts, config, self.prefixSize)
        suffixValues = Features.extractSuffixFeatures(dicts, config, self.suffixSize)
        backAction = torch.ones(1, dtype=torch.int) if Transition.Transition("BACK 1").appliable(config) else torch.zeros(1, dtype=torch.int)
        return torch.cat([backAction, colsValues, historyValues, prefixValues, suffixValues])
    ################################################################################
    
    ################################################################################
    class SeparatedNet(nn.Module):
      def __init__(self, dicts, outputSizes, incremental, featureFunction, historyNb, historyPopNb, suffixSize, prefixSize, columns, hiddenSize) :
        super().__init__()
        self.dummyParam = nn.Parameter(torch.empty(0), requires_grad=False)
    
        self.incremental = incremental
        self.state = 0
        self.featureFunction = featureFunction
        self.historyNb = historyNb
        self.historyPopNb = historyPopNb
        self.suffixSize = suffixSize
        self.prefixSize = prefixSize
        self.columns = columns
    
        self.embSize = 64
        self.nbTargets = len(self.featureFunction.split())
        self.inputSize = len(self.columns)*self.nbTargets+self.historyNb+self.historyPopNb+self.suffixSize+self.prefixSize
        self.outputSizes = outputSizes
    
        for i in range(len(outputSizes)) :
          for name in dicts.dicts :
            self.add_module("emb_"+name+"_"+str(i), nn.Embedding(len(dicts.dicts[name]), self.embSize))
          self.add_module("fc1_"+str(i), nn.Linear(self.inputSize * self.embSize, hiddenSize))
          self.add_module("output_"+str(i), nn.Linear(hiddenSize+1, outputSizes[i]))
        self.dropout = nn.Dropout(0.3)
    
        self.apply(self.initWeights)
    
      def setState(self, state) :
        self.state = state
    
      def forward(self, x) :
        embeddings = []
        canBack = x[...,0:1]
        x = x[...,1:]
    
        for i in range(len(self.columns)) :
          embeddings.append(getattr(self, "emb_"+self.columns[i]+"_"+str(self.state))(x[...,i*self.nbTargets:(i+1)*self.nbTargets]))
        y = torch.cat(embeddings,-1).view(x.size(0),-1)
        curIndex = len(self.columns)*self.nbTargets
        if self.historyNb > 0 :
          historyEmb = getattr(self, "emb_HISTORY_"+str(self.state))(x[...,curIndex:curIndex+self.historyNb]).view(x.size(0),-1)
          y = torch.cat([y, historyEmb],-1)
          curIndex = curIndex+self.historyNb
        if self.historyPopNb > 0 :
          historyPopEmb = getattr(self, "emb_HISTORY_"+str(self.state))(x[...,curIndex:curIndex+self.historyPopNb]).view(x.size(0),-1)
          y = torch.cat([y, historyPopEmb],-1)
          curIndex = curIndex+self.historyPopNb
        if self.prefixSize > 0 :
          prefixEmb = getattr(self, "emb_LETTER_"+str(self.state))(x[...,curIndex:curIndex+self.prefixSize]).view(x.size(0),-1)
          y = torch.cat([y, prefixEmb],-1)
          curIndex = curIndex+self.prefixSize
        if self.suffixSize > 0 :
          suffixEmb = getattr(self, "emb_LETTER_"+str(self.state))(x[...,curIndex:curIndex+self.suffixSize]).view(x.size(0),-1)
          y = torch.cat([y, suffixEmb],-1)
          curIndex = curIndex+self.suffixSize
        y = self.dropout(y)
        y = F.relu(self.dropout(getattr(self, "fc1_"+str(self.state))(y)))
        y = torch.cat([y,canBack], 1)
        y = getattr(self, "output_"+str(self.state))(y)
        return y
    
      def currentDevice(self) :
        return self.dummyParam.device
    
      def initWeights(self,m) :
        if type(m) == nn.Linear:
          torch.nn.init.xavier_uniform_(m.weight)
          m.bias.data.fill_(0.01)
    
      def extractFeatures(self, dicts, config) :
        colsValues = Features.extractColsFeatures(dicts, config, self.featureFunction, self.columns, self.incremental)
        historyValues = Features.extractHistoryFeatures(dicts, config, self.historyNb)
        historyPopValues = Features.extractHistoryPopFeatures(dicts, config, self.historyPopNb)
        prefixValues = Features.extractPrefixFeatures(dicts, config, self.prefixSize)
        suffixValues = Features.extractSuffixFeatures(dicts, config, self.suffixSize)
        backAction = torch.ones(1, dtype=torch.int) if Transition.Transition("BACK 1").appliable(config) else torch.zeros(1, dtype=torch.int)
        return torch.cat([backAction, colsValues, historyValues, historyPopValues, prefixValues, suffixValues])
    
    ################################################################################
    
    ################################################################################
    class LSTMNet(nn.Module):
      def __init__(self, dicts, outputSizes, incremental) :
        super().__init__()
        self.dummyParam = nn.Parameter(torch.empty(0), requires_grad=False)
    
        self.incremental = incremental
        self.state = 0
        self.featureFunctionLSTM = "b.-2 b.-1 b.0 b.1 b.2"
        self.featureFunction = "s.0 s.1 s.2 s.0.0 s.0.-1 s.0.1 s.1.0 s.1.-1 s.1.1 s.2.0 s.2.-1 s.2.1"
        self.historyNb = 5
        self.columns = ["UPOS", "FORM"]
    
        self.embSize = 64
        self.nbInputLSTM = len(self.featureFunctionLSTM.split())
        self.nbInputBase = len(self.featureFunction.split())
        self.nbTargets = self.nbInputBase + self.nbInputLSTM
        self.inputSize = len(self.columns)*self.nbTargets+self.historyNb
        self.outputSizes = outputSizes
        for name in dicts.dicts :
          self.add_module("emb_"+name, nn.Embedding(len(dicts.dicts[name]), self.embSize))
        self.lstmFeat = nn.LSTM(len(self.columns)*self.embSize, len(self.columns)*int(self.embSize/2), 1, batch_first=True, bidirectional = True)
        self.lstmHist = nn.LSTM(self.embSize, int(self.embSize/2), 1, batch_first=True, bidirectional = True)
        self.fc1 = nn.Linear(self.inputSize * self.embSize, 1600)
        for i in range(len(outputSizes)) :
          self.add_module("output_"+str(i), nn.Linear(1600, outputSizes[i]))
        self.dropout = nn.Dropout(0.3)
    
        self.apply(self.initWeights)
    
      def setState(self, state) :
        self.state = state
    
      def forward(self, x) :
        embeddings = []
        embeddingsLSTM = []
        for i in range(len(self.columns)) :
          embeddings.append(getattr(self, "emb_"+self.columns[i])(x[...,i*self.nbInputBase:(i+1)*self.nbInputBase]))
        for i in range(len(self.columns)) :
          embeddingsLSTM.append(getattr(self, "emb_"+self.columns[i])(x[...,len(self.columns)*self.nbInputBase+i*self.nbInputLSTM:len(self.columns)*self.nbInputBase+(i+1)*self.nbInputLSTM]))
    
        z = torch.cat(embeddingsLSTM,-1)
        z = self.lstmFeat(z)[0]
        z = z.reshape(x.size(0), -1)
        y = torch.cat(embeddings,-1).reshape(x.size(0),-1)
        y = torch.cat([y,z], -1)
        if self.historyNb > 0 :
          historyEmb = getattr(self, "emb_HISTORY")(x[...,len(self.columns)*self.nbTargets:len(self.columns)*self.nbTargets+self.historyNb])
          historyEmb = self.lstmHist(historyEmb)[0]
          historyEmb = historyEmb.reshape(x.size(0), -1)
          y = torch.cat([y, historyEmb],-1)
        y = self.dropout(y)
        y = F.relu(self.dropout(self.fc1(y)))
        y = getattr(self, "output_"+str(self.state))(y)
        return y
    
      def currentDevice(self) :
        return self.dummyParam.device
    
      def initWeights(self,m) :
        if type(m) == nn.Linear:
          torch.nn.init.xavier_uniform_(m.weight)
          m.bias.data.fill_(0.01)
    
      def extractFeatures(self, dicts, config) :
        colsValuesBase = Features.extractColsFeatures(dicts, config, self.featureFunction, self.columns, self.incremental)
        colsValuesLSTM = Features.extractColsFeatures(dicts, config, self.featureFunctionLSTM, self.columns, self.incremental)
        historyValues = Features.extractHistoryFeatures(dicts, config, self.historyNb)
        return torch.cat([colsValuesBase, colsValuesLSTM, historyValues])
    ################################################################################