Skip to content
Snippets Groups Projects
Commit abd34a4f authored by Raphael Sturgis's avatar Raphael Sturgis
Browse files

set boundaries for image and features

parent 51f21ad4
No related branches found
No related tags found
2 merge requests!17Resolve "Functionality for experiments using CNNs",!13Draft: Develop
......@@ -62,7 +62,7 @@ def apply_time_sequence(dat, time, func):
def __get_image_value__(features, bounds):
value = []
for f, b in zip(features, bounds):
value.append(1 - (b[1] - f) / b[1])
value.append(1 - (b[1] - f - b[0]) / (b[1] - b[0]))
return value
......@@ -236,12 +236,11 @@ class AISTrajectory(AISPoints):
node_size=0):
nb_channels = 1
if bounding_box == 'fit':
positions = self.df[['longitude', 'latitude']].to_numpy()
if bounding_box == 'fit':
lower_lon, upper_lon = (min(positions[:, 0]), max(positions[:, 0]))
lower_lat, upper_lat = (min(positions[:, 1]), max(positions[:, 1]))
elif bounding_box == 'centered':
positions = self.df[['longitude', 'latitude']].to_numpy()
center_lon, center_lat = positions[-1]
min_lon, max_lon = (min(positions[:, 0]), max(positions[:, 0]))
min_lat, max_lat = (min(positions[:, 1]), max(positions[:, 1]))
......@@ -253,7 +252,11 @@ class AISTrajectory(AISPoints):
lower_lat = center_lat - distance_to_center
upper_lon = center_lon + distance_to_center
lower_lon = center_lon - distance_to_center
elif type(bounding_box) is list:
upper_lon = bounding_box[1][0]
lower_lon = bounding_box[0][0]
upper_lat = bounding_box[1][1]
lower_lat = bounding_box[0][1]
else:
raise ValueError(f"Option not supported: {bounding_box}")
......@@ -291,17 +294,23 @@ class AISTrajectory(AISPoints):
data[x, y] = [1]
else:
bounds = []
if type(features) is list:
nb_channels = len(features)
features_vectors = self.df[features].to_numpy()
for c in features_vectors.T:
bounds.append((0, max(c)))
elif type(features) is str:
features = [features]
features_vectors = self.df[[features]].to_numpy()
for c in features_vectors.T:
bounds.append((0, max(c)))
elif type(features) is dict:
bounds = list(features.values())
features_vectors = self.df[features.keys()].to_numpy()
else:
raise TypeError("Type not supported")
data = np.zeros((height, width, nb_channels), dtype=np.float)
features_vectors = self.df[features].to_numpy()
bounds = []
for c in features_vectors.T:
bounds.append((min(c), max(c)))
for pos, f in zip(positions, features_vectors):
latitude = pos[1]
......
......@@ -380,6 +380,7 @@ class TestAISTrajectory(unittest.TestCase):
self.assertListEqual(result, expected)
class TestAISTrajectoryImageGeneration(unittest.TestCase):
def setUp(self) -> None:
self.trajectory = AISTrajectory(
......@@ -408,7 +409,6 @@ class TestAISTrajectoryImageGeneration(unittest.TestCase):
np.testing.assert_array_equal(result, expected)
def test_generate_array_from_positions_node_size(self):
result = self.trajectory.generate_array_from_positions(height=9, width=9, link=False, bounding_box='fit',
features=None, node_size=1).reshape((9, 9))
expected = np.array([[0, 0, 0, 0, 0, 0, 0, 1, 1],
......@@ -539,15 +539,24 @@ class TestAISTrajectoryImageGeneration(unittest.TestCase):
result = trajectory.generate_array_from_positions(height=9, width=18, link=True, bounding_box='fit',
features=['sog', 'cog'], node_size=0)
expected = np.array([[[0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.5,0.25]],
[[0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.5,0.25]],
[[0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.5,0.25]],
[[0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.5,0.25]],
[[0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.25,1], [0.25,0.5], [0.25,0.5], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.5,0.25]],
[[0,0], [0,0], [0,0], [0,0], [0,0], [0.25,1], [0.25,1], [0,0], [0,0], [0,0], [0.25,0.5], [0.25,0.5], [0,0], [0,0], [0,0], [0,0], [0,0], [0.5,0.25]],
[[0,0], [0,0], [0,0], [0.25,1], [0.25,1], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.25,0.5], [0.25,0.5], [0,0], [0,0], [0,0], [0.5,0.25]],
[[0,0], [0.25,1], [0.25,1], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.25,0.5], [0.25,0.5], [0,0], [0.5,0.25]],
[[0.25,1], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0.25,0.5], [0.5,0.25]]])
expected = np.array([[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.5, 0.25]],
[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.5, 0.25]],
[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.5, 0.25]],
[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.5, 0.25]],
[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.25, 1], [0.25, 0.5],
[0.25, 0.5], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.5, 0.25]],
[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.25, 1], [0.25, 1], [0, 0], [0, 0], [0, 0],
[0.25, 0.5], [0.25, 0.5], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.5, 0.25]],
[[0, 0], [0, 0], [0, 0], [0.25, 1], [0.25, 1], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
[0, 0], [0, 0], [0.25, 0.5], [0.25, 0.5], [0, 0], [0, 0], [0, 0], [0.5, 0.25]],
[[0, 0], [0.25, 1], [0.25, 1], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
[0, 0], [0, 0], [0, 0], [0, 0], [0.25, 0.5], [0.25, 0.5], [0, 0], [0.5, 0.25]],
[[0.25, 1], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0.25, 0.5], [0.5, 0.25]]])
np.testing.assert_array_equal(result, expected)
......@@ -567,7 +576,8 @@ class TestAISTrajectoryImageGeneration(unittest.TestCase):
np.testing.assert_array_equal(result, expected)
def test_generate_array_bounding_box(self):
result = self.trajectory.generate_array_from_positions(height=9, width=9, link=False, bounding_box=[(0, 0), (10,10)],
result = self.trajectory.generate_array_from_positions(height=9, width=9, link=False,
bounding_box=[(0, 0), (10, 10)],
features=None, node_size=0).reshape((9, 9))
expected = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
......@@ -577,11 +587,11 @@ class TestAISTrajectoryImageGeneration(unittest.TestCase):
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0]])
[1, 0, 0, 0, 0, 0, 0, 0, 1]])
np.testing.assert_array_equal(result, expected)
def test_generate_array_from_positions_with_line_grey_scale(self):
def test_generate_array_feature_bounds(self):
trajectory = AISTrajectory(
pd.DataFrame(
{
......@@ -594,7 +604,7 @@ class TestAISTrajectoryImageGeneration(unittest.TestCase):
)
result = trajectory.generate_array_from_positions(height=9, width=18, link=True, bounding_box='fit',
features=("sog", (0,80)), node_size=0).reshape((9, 18))
features={"sog": (0, 80)}, node_size=0).reshape((9, 18))
expected = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5],
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment