Skip to content
Snippets Groups Projects
Commit 61b098c1 authored by Raphael's avatar Raphael
Browse files

data augmentation

parent 9487015c
No related branches found
No related tags found
1 merge request!13Draft: Develop
import random
from copy import deepcopy
import numpy as np
from skais.utils.geometry import vectorize_angle, local_ref, transpose_matrix, \
quaternion_multiply, angleize_vector, rotation_quaternions, spherical_to_carthesian, carthesian_to_spherical, \
rotate_vector_by_quaternion
base_ref = np.array(
[
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
]
)
def shift_positions(aisPositions, axis_lat, axis_long, angle):
copy = deepcopy(aisPositions)
rotation_quaternion, inverse_rotation_quaternion = rotation_quaternions(axis_lat, axis_long, angle)
latitudes = np.radians(aisPositions.df['latitude'].to_numpy())
longitudes = np.radians(aisPositions.df['longitude'].to_numpy())
cogs = np.radians(aisPositions.df['cog'].to_numpy())
headings = np.radians(aisPositions.df['heading'].to_numpy())
for i in range(len(latitudes)):
lat = latitudes[i]
long = longitudes[i]
v_cog = vectorize_angle(cogs[i])
v_heading = vectorize_angle(headings[i])
new_position = rotate_vector_by_quaternion(spherical_to_carthesian(lat, long), rotation_quaternion, inverse_rotation_quaternion)
new_lat, new_long = carthesian_to_spherical(new_position)
origin_ref = local_ref(lat, long)
target_ref = local_ref(new_lat, new_long)
matrix_ob = transpose_matrix(origin_ref, base_ref)
matrix_bt = transpose_matrix(base_ref, target_ref)
# transpose vectors to base referential
v_cog = np.matmul(matrix_ob, v_cog)
v_heading = np.matmul(matrix_ob, v_heading)
# rotate vector
v_cog = rotate_vector_by_quaternion(v_cog, rotation_quaternion, inverse_rotation_quaternion)
v_heading = rotate_vector_by_quaternion(v_heading, rotation_quaternion, inverse_rotation_quaternion)
# transpose vector back to local referential of the new position
v_cog = np.matmul(matrix_bt, v_cog)
v_heading = np.matmul(matrix_bt, v_heading)
latitudes[i] = new_lat
longitudes[i] = new_long
cogs[i] = angleize_vector(v_cog)
headings[i] = angleize_vector(v_heading)
copy.df['latitude'] = np.degrees(latitudes)
copy.df['longitude'] = np.degrees(longitudes)
copy.df['cog'] = np.degrees(cogs)
copy.df['heading'] = np.degrees(headings)
return copy
import random
import numpy as np
from skais.learn.data_augmentation import shift_positions
class RandomAxisRotationEngine:
def __init__(self, shifts_per_trajectory=1):
self.shifts_per_trajectory = shifts_per_trajectory
def apply(self, trajectories, shuffle=True):
new_trajectories = []
for trajectory in trajectories:
for _ in range(self.shifts_per_trajectory):
new_trajectories.append(shift_positions(trajectory, random.uniform(0, 1)*np.pi - np.pi/2,
2*(random.uniform(0, 1)*np.pi) - np.pi,
2*(random.uniform(0, 1)*np.pi) - np.pi))
if not shuffle:
return new_trajectories
else:
return random.shuffle(new_trajectories)
import unittest
from skais.ais.ais_trajectory import AISTrajectory
from skais.learn.data_augmentation import *
import pandas as pd
class data_augmentation(unittest.TestCase):
def test_shift(self):
trajectory = AISTrajectory(
pd.DataFrame(
{
'ts_sec': [i for i in range(10)],
'latitude': [0 for _ in range(5)] + [45 for _ in range(5)],
'longitude': [0 for _ in range(10)],
'cog': [0 for _ in range(10)],
'heading': [90 for _ in range(10)]
}
)
)
shifted = shift_positions(trajectory, 0, 0, np.pi / 2)
self.assertTrue(True)
def test_shift_2(self):
trajectory = AISTrajectory(
pd.DataFrame(
{
'ts_sec': [i for i in range(10)],
'latitude': [0 for _ in range(10)],
'longitude': [-150, -120, -60, -30, 0, 30, 60, 120, 150, 180],
'cog': [0 for _ in range(10)],
'heading': [90 for _ in range(10)]
}
)
)
shifted = shift_positions(trajectory, 0, 0, np.pi / 2)
self.assertTrue(True)
def test_shift_3(self):
trajectory = AISTrajectory(
pd.DataFrame(
{
'ts_sec': [0],
'latitude': [-45],
'longitude': [45],
'cog': [45],
'heading': [120]
}
)
)
shifted = shift_positions(trajectory, np.pi/2, 0, np.pi / 2)
self.assertTrue(True)
import unittest import unittest
from skais.utils.geometry import bresenham import numpy as np
from skais.process.geography import PI
from skais.utils.geometry import bresenham, vectorize_angle, transpose_matrix, vector_rotation, local_ref
class TestGeometry(unittest.TestCase): class TestGeometry(unittest.TestCase):
...@@ -18,7 +21,6 @@ class TestGeometry(unittest.TestCase): ...@@ -18,7 +21,6 @@ class TestGeometry(unittest.TestCase):
self.assertListEqual(result, expected) self.assertListEqual(result, expected)
def test_bresenham_inverted_2(self): def test_bresenham_inverted_2(self):
result = bresenham(16, 4, 3, 9) result = bresenham(16, 4, 3, 9)
expected = [(3, 9), (4, 9), (5, 8), (6, 8), (7, 7), (8, 7), (9, 7), (10, 6), (11, 6), (12, 6), (13, 5), (14, 5), expected = [(3, 9), (4, 9), (5, 8), (6, 8), (7, 7), (8, 7), (9, 7), (10, 6), (11, 6), (12, 6), (13, 5), (14, 5),
...@@ -37,6 +39,74 @@ class TestGeometry(unittest.TestCase): ...@@ -37,6 +39,74 @@ class TestGeometry(unittest.TestCase):
self.assertListEqual(result, expected) self.assertListEqual(result, expected)
def test_vectorize_angle_0(self):
vectorized_angle = vectorize_angle(0)
np.testing.assert_almost_equal(vectorized_angle, np.array([1, 0, 0]))
def test_vectorize_angle_half_PI(self):
vectorized_angle = vectorize_angle(PI / 2)
np.testing.assert_almost_equal(vectorized_angle, np.array([0, 1, 0]))
def test_vectorize_angle_PI(self):
vectorized_angle = vectorize_angle(PI)
np.testing.assert_almost_equal(vectorized_angle, np.array([-1, 0, 0]))
def test_transpose_matrix_1(self):
origin = np.array(
[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]
)
target = np.array(
[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]
)
result = transpose_matrix(origin, target)
expected = np.array(
[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]
)
np.testing.assert_almost_equal(result, expected)
def test_transpose_matrix_2(self):
origin = np.array(
[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]
)
target = np.array(
[[0, 1, 0],
[1, 0, 0],
[0, 0, 1]]
)
result = transpose_matrix(origin, target)
expected = np.array(
[[0, 1, 0],
[1, 0, 0],
[0, 0, 1]]
)
np.testing.assert_almost_equal(result, expected)
def test_rotate_vector(self):
result = vector_rotation(np.array([0, 0, 1]), 0, 0, np.pi / 2)
np.testing.assert_almost_equal(result, np.array([0, -1, 0]))
def test_local_ref_0(self):
result = local_ref(0, 0)
np.testing.assert_almost_equal(result, np.array([[0, 0, -1],
[0, 1, 0],
[1, 0, 0]]))
def test_local_ref_1(self):
result = local_ref(np.pi/2, 0)
np.testing.assert_almost_equal(result, np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]))
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -4,7 +4,7 @@ from numba import jit ...@@ -4,7 +4,7 @@ from numba import jit
R = 6371000 R = 6371000
@jit(nopython=True) @jit(nopython=True, fastmath=True)
def great_circle(lat1, lat2, long1, long2): def great_circle(lat1, lat2, long1, long2):
x1 = np.radians(lat1) x1 = np.radians(lat1)
y1 = np.radians(long1) y1 = np.radians(long1)
......
import numpy as np import numpy as np
from numba import jit from numba import jit
import math as m
@jit(nopython=True) @jit(nopython=True)
def dist_on_grid(x1, y1, x2, y2): def dist_on_grid(x1, y1, x2, y2):
...@@ -65,3 +67,101 @@ def bresenham(x1, y1, x2, y2): ...@@ -65,3 +67,101 @@ def bresenham(x1, y1, x2, y2):
pixels.append((x, y)) pixels.append((x, y))
return pixels return pixels
@jit(nopython=True, cache=True)
def vectorize_angle(angle):
return np.array([-np.cos(angle), np.sin(angle), 0])
@jit(nopython=True, cache=True)
def angleize_vector(vector):
if vector[2] > 0.0001:
raise ValueError
return np.arctan2(vector[1], -vector[0])
@jit(nopython=True, cache=True)
def local_ref(lat, long):
theta = (np.pi / 2) - lat
phi = long
return np.array(
[
[np.cos(theta) * np.cos(phi), np.cos(theta) * np.sin(phi), -np.sin(theta)],
[-np.sin(phi), np.cos(phi), 0],
[np.sin(theta) * np.cos(phi), np.sin(theta) * np.sin(phi), np.cos(theta)]
]
)
# @jit(nopython=True, cache=True)
def transpose_matrix(origin_ref, target_ref):
i1 = origin_ref[0, :]
j1 = origin_ref[1, :]
k1 = origin_ref[2, :]
i2 = target_ref[0, :]
j2 = target_ref[1, :]
k2 = target_ref[2, :]
return np.array(
[
[i1.dot(i2), j1.dot( i2), k1.dot(i2)],
[i1.dot(j2), j1.dot(j2), k1.dot(j2)],
[i1.dot(k2), j1.dot(k2), k1.dot(k2)]
]
)
# return np.matmul(origin_ref, target_ref)
@jit(nopython=True, cache=True)
def rotation_quaternions(lat, long, angle):
theta = (np.pi / 2) - lat
phi = long
vx = np.cos(phi) * np.sin(theta)
vy = np.sin(phi) * np.sin(theta)
vz = np.cos(theta)
return (np.array([np.cos(angle / 2), vx * np.sin(angle / 2), vy * np.sin(angle / 2), vz * np.sin(angle / 2)]),
np.array([np.cos(angle / 2), -vx * np.sin(angle / 2), -vy * np.sin(angle / 2), -vz * np.sin(angle / 2)]))
@jit(nopython=True, cache=True)
def quaternion_multiply(quaternion0, quaternion1):
w0, x0, y0, z0 = quaternion0
w1, x1, y1, z1 = quaternion1
return np.array([(w0 * w1) - (x0 * x1) - (y0 * y1) - (z0 * z1),
(w0 * x1) + (x0 * w1) + (y0 * z1) - (z0 * y1),
(w0 * y1) - (x0 * z1) + (y0 * w1) + (z0 * x1),
(w0 * z1) + (x0 * y1) - (y0 * x1) + (z0 * w1)])
@jit(nopython=True, cache=True)
def vector_rotation(vect, lat, long, angle):
q, q_conjugate = rotation_quaternions(lat, long, angle)
v = np.insert(vect, 0, 0)
return quaternion_multiply(quaternion_multiply(q, v), q_conjugate)[1:]
@jit(nopython=True, cache=True)
def spherical_to_carthesian(lat, long):
theta = (np.pi / 2) - lat
phi = long
return np.array([np.cos(phi) * np.sin(theta), np.sin(phi) * np.sin(theta), np.cos(theta)])
@jit(nopython=True, cache=True)
def carthesian_to_spherical(vect):
x = vect[0]
y = vect[1]
z = vect[2]
XsqPlusYsq = x ** 2 + y ** 2
return m.atan2(z, m.sqrt(XsqPlusYsq)), m.atan2(y, x)
@jit(nopython=True, cache=True)
def rotate_vector_by_quaternion(vector, quaternion, inverse_quaternion):
vect = np.zeros(4)
vect[1:] = vector
return quaternion_multiply(quaternion_multiply(quaternion, vect), inverse_quaternion)[1:]
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment