Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
skais
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Raphael Sturgis
skais
Commits
35d0e4a0
Commit
35d0e4a0
authored
2 years ago
by
Raphael
Browse files
Options
Downloads
Patches
Plain Diff
bug fix hmm
parent
9487015c
No related branches found
No related tags found
1 merge request
!13
Draft: Develop
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
skais/learn/hmm_gmm_classifier.py
+107
-71
107 additions, 71 deletions
skais/learn/hmm_gmm_classifier.py
with
107 additions
and
71 deletions
skais/learn/hmm_gmm_classifier.py
+
107
−
71
View file @
35d0e4a0
...
...
@@ -30,41 +30,18 @@ def split_trajectories(feature_seq, label_seq, n_classes):
return
result
,
sequence_list
class
GMMHMMClassifier
:
def
__init__
(
self
,
nb_states
):
self
.
n_features
=
0
if
type
(
nb_states
)
is
not
list
:
self
.
nb_states
=
np
.
array
([
nb_states
])
else
:
self
.
nb_states
=
np
.
array
(
nb_states
)
self
.
hmms
=
[]
self
.
n_classes
=
len
(
self
.
nb_states
)
for
i
,
nb_state
in
enumerate
(
self
.
nb_states
):
self
.
hmms
.
append
(
GaussianHMM
(
n_components
=
nb_state
,
covariance_type
=
'
full
'
))
self
.
hmm
=
GaussianHMM
(
n_components
=
sum
(
self
.
nb_states
),
covariance_type
=
'
full
'
,
init_params
=
''
,
n_iter
=
100
)
self
.
predict_dictionary
=
{}
self
.
predictor
=
[]
count
=
0
for
i
,
ii
in
enumerate
(
self
.
nb_states
):
self
.
predictor
.
append
({})
for
j
in
range
(
ii
):
self
.
predictor
[
i
][
j
]
=
count
self
.
predict_dictionary
[
count
]
=
i
count
+=
1
def
fit
(
self
,
x
,
y
):
sequences
=
{
i
:
[]
for
i
in
range
(
self
.
n_classes
)}
self
.
n_features
=
x
[
0
].
shape
[
1
]
def
get_sequences
(
x
,
y
,
n_classes
):
sequences
=
{
i
:
[]
for
i
in
range
(
n_classes
)}
for
feature_seq
,
label_seq
in
zip
(
x
,
y
):
split_seq
,
_
=
split_trajectories
(
feature_seq
,
label_seq
,
self
.
n_classes
)
split_seq
,
_
=
split_trajectories
(
feature_seq
,
label_seq
,
n_classes
)
for
key
in
sequences
.
keys
():
sequences
[
key
]
+=
split_seq
[
key
]
return
sequences
def
fit_hmmms
(
self
,
sequences
):
for
i
,
seqs
in
sequences
.
items
():
self
.
hmms
[
i
].
n_features
=
self
.
n_features
if
sum
([
np
.
array
(
s
).
size
for
s
in
seqs
])
>
sum
(
self
.
hmms
[
i
].
_get_n_fit_scalars_per_param
().
values
()):
...
...
@@ -76,21 +53,26 @@ class GMMHMMClassifier:
else
:
self
.
hmms
[
i
]
=
None
def
get_predictions
(
x
,
y
,
hmms
,
predictor
,
n_classes
):
predict
=
[]
for
feature_seq
,
label_seq
in
zip
(
x
,
y
):
_
,
sequences_list
=
split_trajectories
(
feature_seq
,
label_seq
,
self
.
n_classes
)
_
,
sequences_list
=
split_trajectories
(
feature_seq
,
label_seq
,
n_classes
)
pred
=
np
.
array
([])
for
label
,
seq
in
sequences_list
:
if
self
.
hmms
[
label
]
is
not
None
:
_
,
state_sequence
=
self
.
hmms
[
label
].
decode
(
np
.
array
(
seq
),
[
len
(
seq
)])
pred
=
np
.
append
(
pred
,
[
self
.
predictor
[
label
][
i
]
for
i
in
state_sequence
])
if
hmms
[
label
]
is
not
None
:
_
,
state_sequence
=
hmms
[
label
].
decode
(
np
.
array
(
seq
),
[
len
(
seq
)])
pred
=
np
.
append
(
pred
,
[
predictor
[
label
][
i
]
for
i
in
state_sequence
])
if
len
(
pred
)
!=
0
:
predict
.
append
(
pred
)
return
predict
start
=
np
.
zeros
(
sum
(
self
.
nb_states
))
T_mat
=
np
.
zeros
((
sum
(
self
.
nb_states
),
sum
(
self
.
nb_states
)))
def
get_new_hmm_values
(
nb_states
,
predict
):
start
=
np
.
zeros
(
sum
(
nb_states
))
T_mat
=
np
.
zeros
((
sum
(
nb_states
),
sum
(
nb_states
)))
prior
=
-
1
count
=
np
.
zeros
(
sum
(
self
.
nb_states
))
count
=
np
.
zeros
(
sum
(
nb_states
))
for
pred
in
predict
:
start
[
int
(
pred
[
0
])]
+=
1
...
...
@@ -100,36 +82,85 @@ class GMMHMMClassifier:
count
[
prior
]
+=
1
prior
=
int
(
p
)
for
i
in
range
(
sum
(
self
.
nb_states
)):
for
j
in
range
(
sum
(
self
.
nb_states
)):
for
i
in
range
(
sum
(
nb_states
)):
for
j
in
range
(
sum
(
nb_states
)):
if
T_mat
[
i
][
j
]
>
0
:
T_mat
[
i
][
j
]
=
T_mat
[
i
][
j
]
/
count
[
i
]
self
.
hmm
.
startprob_
=
start
/
sum
(
start
)
self
.
hmm
.
transmat_
=
T_mat
for
i
,
value
in
enumerate
(
self
.
hmm
.
transmat_
.
sum
(
axis
=
1
)):
for
i
,
value
in
enumerate
(
T_mat
.
sum
(
axis
=
1
)):
if
value
==
0
:
self
.
hmm
.
transmat_
[
i
][
i
]
=
1.0
T_mat
[
i
][
i
]
=
1.0
return
start
,
T_mat
,
count
def
get_means_and_covars
(
hmms
,
nb_states
,
nb_features
,
degens
):
means
=
[]
covars
=
[]
for
i
,
model
in
enumerate
(
self
.
hmms
):
if
self
.
hmms
[
i
]
is
not
None
:
for
i
,
model
in
enumerate
(
hmms
):
if
hmms
[
i
]
is
not
None
:
means
.
append
(
model
.
means_
)
covars
.
append
(
model
.
covars_
)
else
:
means
.
append
(
np
.
zeros
((
self
.
nb_states
[
i
],
x
[
0
].
shape
[
1
]
)))
covars
.
append
(
np
.
stack
([
make_spd_matrix
(
x
[
0
].
shape
[
1
]
)
for
_
in
range
(
self
.
nb_states
[
i
])],
axis
=
0
))
means
.
append
(
np
.
zeros
((
nb_states
[
i
],
nb_features
)))
covars
.
append
(
np
.
stack
([
make_spd_matrix
(
nb_features
)
for
_
in
range
(
nb_states
[
i
])],
axis
=
0
))
means
=
np
.
concatenate
(
means
)
covars
=
np
.
concatenate
(
covars
)
for
n
,
cv
in
enumerate
(
covars
):
if
count
[
n
]
<=
3
:
if
degens
[
n
]
and
np
.
any
(
linalg
.
eigvalsh
(
cv
)
>
0
)
:
covars
[
n
]
=
np
.
identity
(
cv
.
shape
[
0
])
if
not
np
.
allclose
(
cv
,
cv
.
T
)
or
np
.
any
(
linalg
.
eigvalsh
(
cv
)
<=
0
):
limit
=
0
while
(
not
np
.
allclose
(
cv
,
cv
.
T
)
or
np
.
any
(
linalg
.
eigvalsh
(
cv
)
<=
0
)):
covars
[
n
]
+=
np
.
identity
(
cv
.
shape
[
0
])
*
10
**
-
15
if
limit
>
100
:
covars
[
n
]
=
np
.
identity
(
cv
.
shape
[
0
])
break
return
means
,
covars
class
GMMHMMClassifier
:
def
__init__
(
self
,
nb_states
,
max_iter
=
100
,
verbose
=
False
):
self
.
n_features
=
0
if
type
(
nb_states
)
is
not
list
:
self
.
nb_states
=
np
.
array
([
nb_states
])
else
:
self
.
nb_states
=
np
.
array
(
nb_states
)
self
.
degen_
=
[
False
for
_
in
range
(
sum
(
self
.
nb_states
))]
self
.
hmms
=
[]
self
.
n_classes
=
len
(
self
.
nb_states
)
for
i
,
nb_state
in
enumerate
(
self
.
nb_states
):
self
.
hmms
.
append
(
GaussianHMM
(
n_components
=
nb_state
,
covariance_type
=
'
full
'
,
verbose
=
verbose
,
n_iter
=
max_iter
))
self
.
hmm
=
GaussianHMM
(
n_components
=
sum
(
self
.
nb_states
),
covariance_type
=
'
full
'
,
init_params
=
''
,
n_iter
=
max_iter
)
self
.
predict_dictionary
=
{}
self
.
predictor
=
[]
count
=
0
for
i
,
ii
in
enumerate
(
self
.
nb_states
):
self
.
predictor
.
append
({})
for
j
in
range
(
ii
):
self
.
predictor
[
i
][
j
]
=
count
self
.
predict_dictionary
[
count
]
=
i
count
+=
1
def
fit
(
self
,
x
,
y
):
self
.
n_features
=
x
[
0
].
shape
[
1
]
sequences
=
get_sequences
(
x
,
y
,
self
.
n_classes
)
fit_hmmms
(
self
,
sequences
)
predict
=
get_predictions
(
x
,
y
,
self
.
hmms
,
self
.
predictor
,
self
.
n_classes
)
start
,
T_mat
,
count
=
get_new_hmm_values
(
self
.
nb_states
,
predict
)
self
.
get_degens
(
count
)
self
.
hmm
.
startprob_
=
start
/
sum
(
start
)
self
.
hmm
.
transmat_
=
T_mat
means
,
covars
=
get_means_and_covars
(
self
.
hmms
,
self
.
nb_states
,
self
.
n_features
,
self
.
degen_
)
self
.
hmm
.
means_
=
means
self
.
hmm
.
covars_
=
covars
...
...
@@ -146,6 +177,11 @@ class GMMHMMClassifier:
return
self
.
hmm
.
predict
(
X_all
,
lenghts
)
def
get_degens
(
self
,
count
):
for
i
,
c
in
enumerate
(
count
):
if
c
<
self
.
n_features
:
self
.
degen_
[
i
]
=
True
@jit
(
nopython
=
True
)
def
hmm_probabilities
(
predict
,
nb_states
):
n_states
=
nb_states
.
sum
()
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment