parser=argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter,description="Compute the auto-encoder embeddings of vocalizations once it was trained with train_AE.py")
For insights on how to tune HDBSCAN parameters, read https://hdbscan.readthedocs.io/en/latest/parameter_selection.html""")
parser.add_argument('encodings',type=str,help='.npy file containing umap projections and their associated index in the detection.pkl table (built using compute_embeddings.py)')
parser.add_argument('detections',type=str,help=".csv file with detections to be encoded. Columns filename (path of the soundfile) and pos (center of the detection in seconds) are needed")
parser.add_argument('-umap_ndim',type=int,help="number of dimension for the UMAP compression",default=2)
parser.add_argument("-audio_folder",type=str,default='./',help="Folder from which to load sound files")
parser.add_argument("-SR",type=int,default=44100,help="Sample rate of the samples before spectrogram computation")
parser.add_argument("-nMel",type=int,default=128,help="Number of Mel bands for the spectrogram (either 64 or 128)")
...
...
@@ -29,80 +29,83 @@ parser.add_argument("-NFFT", type=int, default=1024, help="FFT size for the spec
parser.add_argument("-sampleDur",type=float,default=1,help="Size of the signal extracts surrounding detections to be encoded")
parser.add_argument('-min_cluster_size',type=int,default=10,help='Used for HDBSCAN clustering.')