Newer
Older
from tqdm import tqdm
import matplotlib.pyplot as plt
import pandas as pd
parser = argparse.ArgumentParser()
parser.add_argument("specie", type=str)
parser.add_argument("-frontend", type=str, default='logMel')
parser.add_argument("-nMel", type=int, default=64)
args = parser.parse_args()
meta = models.meta[args.specie]
df = pd.read_csv(f'{args.specie}/{args.specie}.csv')
frontend = models.frontend[args.frontend](meta['sr'], meta['nfft'], meta['sampleDur'], args.nMel)
loader = torch.utils.data.DataLoader(u.Dataset(grp.sample(min(len(grp), 100)), args.specie+'/audio/', meta['sr'], meta['sampleDur']),\
batch_size=1, num_workers=4, pin_memory=True)
for x, idx in tqdm(loader, desc=args.specie + ' ' + label, leave=False):
x = frontend(x).squeeze().detach()
plt.figure()
plt.imshow(x, origin='lower', aspect='auto')
plt.savefig(f'{args.specie}/annot_pngs/{label}/{idx.item()}')
plt.close()