Skip to content
Snippets Groups Projects
Commit b50b9401 authored by Nathan Lhote's avatar Nathan Lhote
Browse files

m

parent 220c0591
No related branches found
No related tags found
No related merge requests found
...@@ -45,6 +45,7 @@ ...@@ -45,6 +45,7 @@
\newcommand{\push}{\mathsf{push}} \newcommand{\push}{\mathsf{push}}
\newcommand{\pop}{\mathsf{pop}} \newcommand{\pop}{\mathsf{pop}}
\newcommand{\auta}{\mathcal A} \newcommand{\auta}{\mathcal A}
\newcommand{\autb}{\mathcal B}
\newtheorem{theorem}{Theorem} \newtheorem{theorem}{Theorem}
\newtheorem{corollary}{Corollary} \newtheorem{corollary}{Corollary}
...@@ -114,7 +115,6 @@ A non-deterministic \msomi (\nmsomi) $S$ from $\ssign$-structures to $\tsign$-st ...@@ -114,7 +115,6 @@ A non-deterministic \msomi (\nmsomi) $S$ from $\ssign$-structures to $\tsign$-st
We call string-to-string (monadic) interpretations the particular case when the two signatures have unary symbols and one binary symbol which is a linear order (this can be enforced syntactically). We call string-to-string (monadic) interpretations the particular case when the two signatures have unary symbols and one binary symbol which is a linear order (this can be enforced syntactically).
An \expreg function is a string-to-string monadic interpretation. An \expreg function is a string-to-string monadic interpretation.
We denote by \textsf{ExpF} the class of \expreg functions.
...@@ -184,8 +184,23 @@ From the backward translation theorem. ...@@ -184,8 +184,23 @@ From the backward translation theorem.
\subsection{\Expreg functions of polynomial growth} \subsection{Growth}
\subsubsection{Exponential growth}
\begin{remark}
An \msomi of dimension $d$ has growth $O((2^n)^d)=O(2^{dn})=2^{O(n)}$.
\end{remark}
\begin{corollary}
\begin{itemize}~
\item \Expreg functions are \emph{not} closed under composition.
\item \Expreg functions are \emph{bot} closed under pre-composition by functions of superlinear growth, in particular polyregular functions.
\end{itemize}
\end{corollary}
\begin{theorem} \begin{theorem}
An \msomi of growth $O(n^d)$ can be realized by an \msoi of dimension $d$. An \msomi of growth $O(n^d)$ can be realized by an \msoi of dimension $d$.
\end{theorem} \end{theorem}
...@@ -214,13 +229,57 @@ From a linear bounded automaton, the next configuration relation can be defined ...@@ -214,13 +229,57 @@ From a linear bounded automaton, the next configuration relation can be defined
Does the model $a_1\cdots a_n\mapsto f\circ f_{a_1}\circ \cdots \circ f_{a_n}(\epsilon)$ compute \dlin ? Does the model $a_1\cdots a_n\mapsto f\circ f_{a_1}\circ \cdots \circ f_{a_n}(\epsilon)$ compute \dlin ?
\end{question} \end{question}
\section{Nested invisible pebble transducer}
An invisible-pebble automaton $\auta$ is given by:
\begin{itemize}
\item a finite set of letters $A$, and two extra letters $\set{\vdash,\dashv}$
\item a finite set of states $Q$
\item a transition function $\delta: A_{\vdash,\dashv}{\times} Q \rightarrow {\set{\mleft,\mright}}{\times}Q + {\set{\push}}{\times}Q^2 +\set{\pop}$
\end{itemize}
Let us explain how the automaton is run over a word $u\in A^*$. The automaton actually runs over the word $v={\vdash} u {\dashv}$.
A \emph{configuration} $c$ over the word $v$ of length $n$ is a word over $Q\times\set{1,\ldots,n}$. The configuration is actually a stack of reading heads over the input word. The head of the stack is the \emph{active head}.
The \emph{initial configuration} of $\auta$ over $v$ is the word $(q_0,1)$. Given a non-empty configuration $c(p,i)$ the \emph{successor configuration} $c'$ is defined according to $\delta(v[i],p)=\alpha$ in the following way:
\begin{itemize}
\item if $\alpha=(\mleft,q)$, and $i>1$ then $c'=c(q,i-1)$
\item if $\alpha=(\mright,q)$, and $i<n$ then $c'=c(q,i+1)$
\item if $\alpha=(\push,q_1,q_2)$ then $c'=c(q_1,i)(q_2,i)$
\item if $\alpha= \pop$ then $c'=c$
\item in all other cases, $c'$ is not defined
\end{itemize}
A \emph{$1$-nested} invisible-pebble automaton $\auta$ is simply an invisible pebble automaton.
A \emph{$d+1$-nested} invisible-pebble automaton $\auta$ is given by a pair $(\auta,\autb)$
\begin{theorem}
Any transduction defined by a nested marble transducer can be expressed as an \msomi.
\end{theorem}
\begin{question}
Does $\ipt\subseteq \mt\circ\msot$ hold?
\end{question}
\section{Nested marble transducer} \section{Nested marble transducer}
We define a model of transducers based on marble transducers. We define a model of transducers based on marble transducers.
pebble transducer model. candidate: A finite nesting height. a marble of height k cannot go through another marble of height k. However it can go through marbles of height $<k$.
nested marble transducers. A finite nesting height. a marble of height k cannot go through another marble of height k. However it can go through marbles of height $<k$.
%TODO: find a better name than "marble"
A marble automaton $\auta$ is given by:
\begin{itemize}
\item a finite set of letters $A$, and two extra letters $\set{\vdash,\dashv}$
\item a finite set of states $Q$
\item a transition function $\delta: A_{\vdash,\dashv}{\times} Q \rightarrow {\set{\mleft,\mright}}{\times}Q + {\set{\push}}{\times}Q^2 +\set{\pop}$
\end{itemize}
\begin{theorem} \begin{theorem}
Any transduction defined by a nested marble transducer can be expressed as an \msomi. Any transduction defined by a nested marble transducer can be expressed as an \msomi.
\end{theorem} \end{theorem}
...@@ -254,32 +313,8 @@ The function $f$ above is not definable by a nested marble transducer. ...@@ -254,32 +313,8 @@ The function $f$ above is not definable by a nested marble transducer.
\section{Nested invisible pebble transducer}
An invisible-pebble automaton $\auta$ is given by:
\begin{itemize}
\item a finite set of letters $A$, and two extra letters $\set{\vdash,\dashv}$
\item a finite set of states $Q$
\item a transition function $\delta: A_{\vdash,\dashv}\times Q \rightarrow \set{\mleft,\mright,\push,\pop}\times Q$
\end{itemize}
Let us explain how the automaton is run over a word $u\in A^*$. The automaton actually runs over the word $v={\vdash} u {\dashv}$.
A \emph{configuration} $c$ over the word $v$ of length $n$ is a word over $Q\times\set{1,\ldots,n}$. The configuration is actually a stack of reading heads over the input word. The head of the stack is the \emph{active head}.
The \emph{initial configuration} of $\auta$ over $v$ is the word $(q_0,1)$. Given a non-empty configuration $c(p,i)$ the \emph{successor configuration} $c'$ is defined according to $\delta(v[i],p)=(t,q)$ in the following way:
\begin{itemize}
\item if $t=\mleft$, and $i>1$ then $c'=c(q,i-1)$
\item if $t=\mright$ and $i<n$ then $c'=c(q,i+1)$
\item if $t=\push$ then $c'=c(p,i)(q,i)$
\item if $t=\pop$ and $c=d(r,j)$ then $c'=d(q,j)$
\item in all other cases, $c'$ is not defined
\end{itemize}
\begin{question}
Does $\ipt\subseteq \mt\circ\msot$ hold?
\end{question}
\section{Some remaining questions} \section{Some remaining questions}
\subsection{Expressiveness} \subsection{Expressiveness}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment