@@ -99,7 +107,6 @@ where $\bar X$ denotes a $d$-tuple of monadic variables.
...
@@ -99,7 +107,6 @@ where $\bar X$ denotes a $d$-tuple of monadic variables.
Given a structure $A$ over $\ssign$, we define its image by $T$ by a structure $B=\sem T(A)$ over $\tsign$: the universe of $B$ is the set $U=\set{\bar S\mid\ A \models\phi_U(\bar S)}$, given $R\in\tsign$ of arity $k$, we define $R$ in $B$ as the set $\set{\tuple{\bar S_1,\ldots,\bar S_k}\in U^k\mid\ \phi_R(\bar S_1,\ldots,\bar S_k)}$.
Given a structure $A$ over $\ssign$, we define its image by $T$ by a structure $B=\sem T(A)$ over $\tsign$: the universe of $B$ is the set $U=\set{\bar S\mid\ A \models\phi_U(\bar S)}$, given $R\in\tsign$ of arity $k$, we define $R$ in $B$ as the set $\set{\tuple{\bar S_1,\ldots,\bar S_k}\in U^k\mid\ \phi_R(\bar S_1,\ldots,\bar S_k)}$.
%Given tuples $\bar X_1,\ldots,\bar X_l$, we extend $\sem T$ by $\sem T(A,\bar X_1,\ldots,\bar X_l)=B,\set{\bar X_1},\ldots,\set{\bar X_l}$.
%Given tuples $\bar X_1,\ldots,\bar X_l$, we extend $\sem T$ by $\sem T(A,\bar X_1,\ldots,\bar X_l)=B,\set{\bar X_1},\ldots,\set{\bar X_l}$.
\fomi is defined by restricting formulas to be in \fo.
A non-deterministic \msomi (\nmsomi) $S$ from $\ssign$-structures to $\tsign$-structures with $k$ parameters is given by an \msomi$T$ from $\ssign\uplus\set{X_1,\ldots,X_k}$-structures to $\tsign$-structures where $X_1,\ldots,X_k$ are additional unary symbols. Let $\pi$ denote the natural projection from $\ssign\uplus\set{X_1,\ldots,X_k}$-structures to $\ssign$-structures. We define $\sem S(A)=\set{\sem T(C)\mid\ \pi(C)=A}$.
A non-deterministic \msomi (\nmsomi) $S$ from $\ssign$-structures to $\tsign$-structures with $k$ parameters is given by an \msomi$T$ from $\ssign\uplus\set{X_1,\ldots,X_k}$-structures to $\tsign$-structures where $X_1,\ldots,X_k$ are additional unary symbols. Let $\pi$ denote the natural projection from $\ssign\uplus\set{X_1,\ldots,X_k}$-structures to $\ssign$-structures. We define $\sem S(A)=\set{\sem T(C)\mid\ \pi(C)=A}$.
Any transduction defined by a nested marble transducer can be expressed as an \msomi.
Any transduction defined by a nested marble transducer can be expressed as an \msomi.
\end{theorem}
\end{theorem}
\begin{remark}
~
\begin{itemize}
\item Nested marble transducers subsume both pebble and marble transducers.
\item They are closed under postcomposition by polyregular functions. TODO check
\end{itemize}
\end{remark}
\begin{example}
\begin{example}
Let $A=\set{a,b}$. Let us define an \expreg function $f:\left(A\cup\set{\sharp}\right)^*\rightarrow(A\times\set{0,1}\cup\set{\natural})^*$.
Let $A=\set{a,b}$. Let us define an \expreg function $f:\left(A\cup\set{\sharp}\right)^*\rightarrow(A\times\set{0,1}\cup\set{\natural})^*$.
...
@@ -255,16 +274,26 @@ An invisible-pebble automaton $\auta$ is given by:
...
@@ -255,16 +274,26 @@ An invisible-pebble automaton $\auta$ is given by:
\begin{itemize}
\begin{itemize}
\item a finite set of letters $A$, and two extra letters $\set{\vdash,\dashv}$
\item a finite set of letters $A$, and two extra letters $\set{\vdash,\dashv}$
\item a finite set of states $Q$
\item a finite set of states $Q$
\item a transition function $\delta: A_{\vdash,\dashv}\times Q \rightarrow\set{\mleft,\mright,\push,\pop}$
\item a transition function $\delta: A_{\vdash,\dashv}\times Q \rightarrow\set{\mleft,\mright,\push,\pop}\times Q$
\item a push function: $\push: A_{\vdash,\dashv}\times Q\rightarrow Q$
\item a pop update function: $\pop: A_{\tiny{\vdash,\dashv}}\times Q\rightarrow(Q\rightarrow Q)$
\end{itemize}
\end{itemize}
Let us explain how the automaton is run over a word $w\in A^*$. The automaton actually runs over the word ${\vdash} w {\dashv}$.
Let us explain how the automaton is run over a word $u\in A^*$. The automaton actually runs over the word $v={\vdash} u {\dashv}$.
A \emph{configuration}$c$ over a word ${\vdash} w {\dashv}$ of length $n$ is a word over $Q\times\set{1,\ldots,n}$. The configuration is actually a stack of reading heads over the input word. The head of the stack is the \emph{active head}.
A \emph{configuration}$c$ over the word $v$ of length $n$ is a word over $Q\times\set{1,\ldots,n}$. The configuration is actually a stack of reading heads over the input word. The head of the stack is the \emph{active head}.
The \emph{initial configuration} of $\auta$ over $v$ is the word $(q_0,1)$. Given a non-empty configuration $c(p,i)$ the \emph{successor configuration}$c'$ is defined according to $\delta(v[i],p)=(t,q)$ in the following way:
\begin{itemize}
\item if $t=\mleft$, and $i>1$ then $c'=c(q,i-1)$
\item if $t=\mright$ and $i<n$ then $c'=c(q,i+1)$
\item if $t=\push$ then $c'=c(p,i)(q,i)$
\item if $t=\pop$ and $c=d(r,j)$ then $c'=d(q,j)$
\item in all other cases, $c'$ is not defined
\end{itemize}
\begin{question}
Does $\ipt=\mt\circ\msot$ hold?
\end{question}
\section{Some remaining questions}
\section{Some remaining questions}
\subsection{Expressiveness}
\subsection{Expressiveness}
...
@@ -284,7 +313,7 @@ A \emph{configuration} $c$ over a word ${\vdash} w {\dashv}$ of length $n$ is a
...
@@ -284,7 +313,7 @@ A \emph{configuration} $c$ over a word ${\vdash} w {\dashv}$ of length $n$ is a
they capture \msomi ?
they capture \msomi ?
\item recursive programming language corresponding or being
\item recursive programming language corresponding or being
captured by \msomi ?
captured by \msomi ?
\item Krohn-Rhodes like decomposition \eg$\mathsf{polyreg}\circ\mathsf{exp}\circ\mathsf{reg}$, with $\mathsf{exp}$ being some simple class of exponential growth function.
\item Krohn-Rhodes like decomposition \eg$\msoi\circ\mathsf{exp}\circ\msot$, with $\mathsf{exp}$ being some simple class of exponential growth function.