Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
V
Vision-projects
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
BOUSSARHANE Mohyeddine
Vision-projects
Commits
80e82aee
Commit
80e82aee
authored
5 months ago
by
Mohyeddine2
Browse files
Options
Downloads
Patches
Plain Diff
objectTrackign
parent
48365a14
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
ObjectTracking.py
+17
-7
17 additions, 7 deletions
ObjectTracking.py
h.py
+0
-0
0 additions, 0 deletions
h.py
with
17 additions
and
7 deletions
ObjectTracking.py
+
17
−
7
View file @
80e82aee
...
...
@@ -2,7 +2,7 @@ import cv2
import
numpy
as
np
import
os
import
matplotlib.pyplot
as
plt
def
calculate_histogram
(
image
,
bins
=
3
2
):
def
calculate_histogram
(
image
,
bins
=
2
55
):
hsv_image
=
cv2
.
cvtColor
(
image
,
cv2
.
COLOR_BGR2HSV
)
hist
=
cv2
.
calcHist
([
hsv_image
],
[
0
,
1
],
None
,
[
bins
,
bins
],
[
0
,
180
,
0
,
256
])
return
cv2
.
normalize
(
hist
,
hist
).
flatten
()
...
...
@@ -22,6 +22,13 @@ def emd(hist1, hist2):
bins2
=
np
.
array
([[
i
,
hist2
[
i
]]
for
i
in
range
(
len
(
hist2
))],
dtype
=
np
.
float32
)
emd_value
,
_
,
_
=
cv2
.
EMD
(
bins1
,
bins2
,
cv2
.
DIST_L2
)
return
emd_value
def
qf_distance
(
hist1
,
hist2
):
A
=
np
.
zeros
((
len
(
hist1
),
len
(
hist2
)))
dist
=
np
.
abs
(
hist1
[:,
None
]
-
hist2
)
A
=
1
-
dist
/
np
.
max
(
dist
)
diff
=
np
.
abs
(
hist1
-
hist2
)
qf
=
np
.
sqrt
(
np
.
dot
(
diff
.
T
,
np
.
dot
(
A
,
diff
)))
return
qf
def
find_minimum_distance
(
reference_image_path
,
scene_folder
,
bins
=
32
):
# Charger l'image de référence
reference_image
=
cv2
.
imread
(
reference_image_path
)
...
...
@@ -33,14 +40,14 @@ def find_minimum_distance(reference_image_path, scene_folder, bins=32):
'
Bhattacharyya
'
:
float
(
'
inf
'
),
'
Minkowski
'
:
float
(
'
inf
'
),
'
Matusita
'
:
float
(
'
inf
'
),
'
Cosine
'
:
float
(
'
inf
'
),
'
QF
'
:
float
(
'
inf
'
),
'
EMD
'
:
float
(
'
inf
'
)
}
closest_images
=
{
'
Bhattacharyya
'
:
None
,
'
Minkowski
'
:
None
,
'
Matusita
'
:
None
,
'
Cosine
'
:
None
,
'
QF
'
:
None
,
'
EMD
'
:
None
}
for
filename
in
os
.
listdir
(
scene_folder
):
...
...
@@ -55,7 +62,7 @@ def find_minimum_distance(reference_image_path, scene_folder, bins=32):
'
Bhattacharyya
'
:
bhattacharyya_distance
(
reference_hist
,
target_hist
),
'
Minkowski
'
:
minkowski_distance
(
reference_hist
,
target_hist
),
'
Matusita
'
:
matusita_distance
(
reference_hist
,
target_hist
),
'
Cosine
'
:
cosine
_distance
(
reference_hist
,
target_hist
),
'
QF
'
:
qf
_distance
(
reference_hist
,
target_hist
),
'
EMD
'
:
emd
(
reference_hist
,
target_hist
)
}
...
...
@@ -66,7 +73,7 @@ def find_minimum_distance(reference_image_path, scene_folder, bins=32):
return
min_distances
,
closest_images
,
reference_image
,
distances
def
visualize_results
(
reference_image
,
closest_images
,
min_distances
):
metrics
=
list
(
closest_images
.
keys
())
fig
,
axes
=
plt
.
subplots
(
1
,
len
(
metrics
)
+
1
,
figsize
=
(
15
,
5
))
fig
,
axes
=
plt
.
subplots
(
1
,
len
(
metrics
)
+
1
,
figsize
=
(
15
,
10
))
axes
[
0
].
imshow
(
cv2
.
cvtColor
(
reference_image
,
cv2
.
COLOR_BGR2RGB
))
axes
[
0
].
set_title
(
"
Image de Référence
"
)
axes
[
0
].
axis
(
'
off
'
)
...
...
@@ -80,11 +87,14 @@ def visualize_results(reference_image, closest_images, min_distances):
axes
[
i
+
1
].
axis
(
'
off
'
)
plt
.
tight_layout
()
plt
.
show
()
reference_image_path
=
"
Scene1/
15
8
.jpg
"
scene_folder
=
"
S
cene
1
"
reference_image_path
=
"
20210617_193
15
5
.jpg
"
scene_folder
=
"
s
cene
"
min_distances
,
closest_images
,
reference_image
,
dis
=
find_minimum_distance
(
reference_image_path
,
scene_folder
)
print
(
"
Distances minimales et images correspondantes :
"
)
for
metric
,
distance
in
min_distances
.
items
():
print
(
f
"
{
metric
}
:
{
distance
:
.
4
f
}
(Image :
{
closest_images
[
metric
]
}
)
"
)
visualize_results
(
reference_image
,
closest_images
,
min_distances
)
This diff is collapsed.
Click to expand it.
h.py
0 → 100644
+
0
−
0
View file @
80e82aee
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment