Skip to content
Snippets Groups Projects
Select Git revision
  • 8af429289449d50d6e89f00099e415ddd7e8c0d8
  • master default protected
2 results

ipi_extract.py

Blame
  • printf.h 21.17 KiB
    // Formatting library for C++ - legacy printf implementation
    //
    // Copyright (c) 2012 - 2016, Victor Zverovich
    // All rights reserved.
    //
    // For the license information refer to format.h.
    
    #ifndef FMT_PRINTF_H_
    #define FMT_PRINTF_H_
    
    #include <algorithm>  // std::max
    #include <limits>     // std::numeric_limits
    
    #include "ostream.h"
    
    FMT_BEGIN_NAMESPACE
    namespace internal {
    
    // Checks if a value fits in int - used to avoid warnings about comparing
    // signed and unsigned integers.
    template <bool IsSigned> struct int_checker {
      template <typename T> static bool fits_in_int(T value) {
        unsigned max = max_value<int>();
        return value <= max;
      }
      static bool fits_in_int(bool) { return true; }
    };
    
    template <> struct int_checker<true> {
      template <typename T> static bool fits_in_int(T value) {
        return value >= (std::numeric_limits<int>::min)() &&
               value <= max_value<int>();
      }
      static bool fits_in_int(int) { return true; }
    };
    
    class printf_precision_handler {
     public:
      template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
      int operator()(T value) {
        if (!int_checker<std::numeric_limits<T>::is_signed>::fits_in_int(value))
          FMT_THROW(format_error("number is too big"));
        return (std::max)(static_cast<int>(value), 0);
      }
    
      template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
      int operator()(T) {
        FMT_THROW(format_error("precision is not integer"));
        return 0;
      }
    };
    
    // An argument visitor that returns true iff arg is a zero integer.
    class is_zero_int {
     public:
      template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
      bool operator()(T value) {
        return value == 0;
      }
    
      template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
      bool operator()(T) {
        return false;
      }
    };
    
    template <typename T> struct make_unsigned_or_bool : std::make_unsigned<T> {};
    
    template <> struct make_unsigned_or_bool<bool> { using type = bool; };
    
    template <typename T, typename Context> class arg_converter {
     private:
      using char_type = typename Context::char_type;
    
      basic_format_arg<Context>& arg_;
      char_type type_;
    
     public:
      arg_converter(basic_format_arg<Context>& arg, char_type type)
          : arg_(arg), type_(type) {}
    
      void operator()(bool value) {
        if (type_ != 's') operator()<bool>(value);
      }
    
      template <typename U, FMT_ENABLE_IF(std::is_integral<U>::value)>
      void operator()(U value) {
        bool is_signed = type_ == 'd' || type_ == 'i';
        using target_type = conditional_t<std::is_same<T, void>::value, U, T>;
        if (const_check(sizeof(target_type) <= sizeof(int))) {
          // Extra casts are used to silence warnings.
          if (is_signed) {
            arg_ = internal::make_arg<Context>(
                static_cast<int>(static_cast<target_type>(value)));
          } else {
            using unsigned_type = typename make_unsigned_or_bool<target_type>::type;
            arg_ = internal::make_arg<Context>(
                static_cast<unsigned>(static_cast<unsigned_type>(value)));
          }
        } else {
          if (is_signed) {
            // glibc's printf doesn't sign extend arguments of smaller types:
            //   std::printf("%lld", -42);  // prints "4294967254"
            // but we don't have to do the same because it's a UB.
            arg_ = internal::make_arg<Context>(static_cast<long long>(value));
          } else {
            arg_ = internal::make_arg<Context>(
                static_cast<typename make_unsigned_or_bool<U>::type>(value));
          }
        }
      }
    
      template <typename U, FMT_ENABLE_IF(!std::is_integral<U>::value)>
      void operator()(U) {}  // No conversion needed for non-integral types.
    };
    
    // Converts an integer argument to T for printf, if T is an integral type.
    // If T is void, the argument is converted to corresponding signed or unsigned
    // type depending on the type specifier: 'd' and 'i' - signed, other -
    // unsigned).
    template <typename T, typename Context, typename Char>
    void convert_arg(basic_format_arg<Context>& arg, Char type) {
      visit_format_arg(arg_converter<T, Context>(arg, type), arg);
    }
    
    // Converts an integer argument to char for printf.
    template <typename Context> class char_converter {
     private:
      basic_format_arg<Context>& arg_;
    
     public:
      explicit char_converter(basic_format_arg<Context>& arg) : arg_(arg) {}
    
      template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
      void operator()(T value) {
        arg_ = internal::make_arg<Context>(
            static_cast<typename Context::char_type>(value));
      }
    
      template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
      void operator()(T) {}  // No conversion needed for non-integral types.
    };
    
    // Checks if an argument is a valid printf width specifier and sets
    // left alignment if it is negative.
    template <typename Char> class printf_width_handler {
     private:
      using format_specs = basic_format_specs<Char>;
    
      format_specs& specs_;
    
     public:
      explicit printf_width_handler(format_specs& specs) : specs_(specs) {}
    
      template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
      unsigned operator()(T value) {
        auto width = static_cast<uint32_or_64_or_128_t<T>>(value);
        if (internal::is_negative(value)) {
          specs_.align = align::left;
          width = 0 - width;
        }
        unsigned int_max = max_value<int>();
        if (width > int_max) FMT_THROW(format_error("number is too big"));
        return static_cast<unsigned>(width);
      }
    
      template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
      unsigned operator()(T) {
        FMT_THROW(format_error("width is not integer"));
        return 0;
      }
    };
    
    template <typename Char, typename Context>
    void printf(buffer<Char>& buf, basic_string_view<Char> format,
                basic_format_args<Context> args) {
      Context(std::back_inserter(buf), format, args).format();
    }
    
    template <typename OutputIt, typename Char, typename Context>
    internal::truncating_iterator<OutputIt> printf(
        internal::truncating_iterator<OutputIt> it, basic_string_view<Char> format,
        basic_format_args<Context> args) {
      return Context(it, format, args).format();
    }
    }  // namespace internal
    
    using internal::printf;  // For printing into memory_buffer.
    
    template <typename Range> class printf_arg_formatter;
    
    template <typename OutputIt, typename Char> class basic_printf_context;
    
    /**
      \rst
      The ``printf`` argument formatter.
      \endrst
     */
    template <typename Range>
    class printf_arg_formatter : public internal::arg_formatter_base<Range> {
     public:
      using iterator = typename Range::iterator;
    
     private:
      using char_type = typename Range::value_type;
      using base = internal::arg_formatter_base<Range>;
      using context_type = basic_printf_context<iterator, char_type>;
    
      context_type& context_;
    
      void write_null_pointer(char) {
        this->specs()->type = 0;
        this->write("(nil)");
      }
    
      void write_null_pointer(wchar_t) {
        this->specs()->type = 0;
        this->write(L"(nil)");
      }
    
     public:
      using format_specs = typename base::format_specs;
    
      /**
        \rst
        Constructs an argument formatter object.
        *buffer* is a reference to the output buffer and *specs* contains format
        specifier information for standard argument types.
        \endrst
       */
      printf_arg_formatter(iterator iter, format_specs& specs, context_type& ctx)
          : base(Range(iter), &specs, internal::locale_ref()), context_(ctx) {}
    
      template <typename T, FMT_ENABLE_IF(fmt::internal::is_integral<T>::value)>
      iterator operator()(T value) {
        // MSVC2013 fails to compile separate overloads for bool and char_type so
        // use std::is_same instead.
        if (std::is_same<T, bool>::value) {
          format_specs& fmt_specs = *this->specs();
          if (fmt_specs.type != 's') return base::operator()(value ? 1 : 0);
          fmt_specs.type = 0;
          this->write(value != 0);
        } else if (std::is_same<T, char_type>::value) {
          format_specs& fmt_specs = *this->specs();
          if (fmt_specs.type && fmt_specs.type != 'c')
            return (*this)(static_cast<int>(value));
          fmt_specs.sign = sign::none;
          fmt_specs.alt = false;
          fmt_specs.align = align::right;
          return base::operator()(value);
        } else {
          return base::operator()(value);
        }
        return this->out();
      }
    
      template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
      iterator operator()(T value) {
        return base::operator()(value);
      }
    
      /** Formats a null-terminated C string. */
      iterator operator()(const char* value) {
        if (value)
          base::operator()(value);
        else if (this->specs()->type == 'p')
          write_null_pointer(char_type());
        else
          this->write("(null)");
        return this->out();
      }
    
      /** Formats a null-terminated wide C string. */
      iterator operator()(const wchar_t* value) {
        if (value)
          base::operator()(value);
        else if (this->specs()->type == 'p')
          write_null_pointer(char_type());
        else
          this->write(L"(null)");
        return this->out();
      }
    
      iterator operator()(basic_string_view<char_type> value) {
        return base::operator()(value);
      }
    
      iterator operator()(monostate value) { return base::operator()(value); }
    
      /** Formats a pointer. */
      iterator operator()(const void* value) {
        if (value) return base::operator()(value);
        this->specs()->type = 0;
        write_null_pointer(char_type());
        return this->out();
      }
    
      /** Formats an argument of a custom (user-defined) type. */
      iterator operator()(typename basic_format_arg<context_type>::handle handle) {
        handle.format(context_.parse_context(), context_);
        return this->out();
      }
    };
    
    template <typename T> struct printf_formatter {
      template <typename ParseContext>
      auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
        return ctx.begin();
      }
    
      template <typename FormatContext>
      auto format(const T& value, FormatContext& ctx) -> decltype(ctx.out()) {
        internal::format_value(internal::get_container(ctx.out()), value);
        return ctx.out();
      }
    };
    
    /** This template formats data and writes the output to a writer. */
    template <typename OutputIt, typename Char> class basic_printf_context {
     public:
      /** The character type for the output. */
      using char_type = Char;
      using format_arg = basic_format_arg<basic_printf_context>;
      template <typename T> using formatter_type = printf_formatter<T>;
    
     private:
      using format_specs = basic_format_specs<char_type>;
    
      OutputIt out_;
      basic_format_args<basic_printf_context> args_;
      basic_format_parse_context<Char> parse_ctx_;
    
      static void parse_flags(format_specs& specs, const Char*& it,
                              const Char* end);
    
      // Returns the argument with specified index or, if arg_index is -1, the next
      // argument.
      format_arg get_arg(int arg_index = -1);
    
      // Parses argument index, flags and width and returns the argument index.
      int parse_header(const Char*& it, const Char* end, format_specs& specs);
    
     public:
      /**
       \rst
       Constructs a ``printf_context`` object. References to the arguments and
       the writer are stored in the context object so make sure they have
       appropriate lifetimes.
       \endrst
       */
      basic_printf_context(OutputIt out, basic_string_view<char_type> format_str,
                           basic_format_args<basic_printf_context> args)
          : out_(out), args_(args), parse_ctx_(format_str) {}
    
      OutputIt out() { return out_; }
      void advance_to(OutputIt it) { out_ = it; }
    
      format_arg arg(int id) const { return args_.get(id); }
    
      basic_format_parse_context<Char>& parse_context() { return parse_ctx_; }
    
      FMT_CONSTEXPR void on_error(const char* message) {
        parse_ctx_.on_error(message);
      }
    
      /** Formats stored arguments and writes the output to the range. */
      template <typename ArgFormatter = printf_arg_formatter<buffer_range<Char>>>
      OutputIt format();
    };
    
    template <typename OutputIt, typename Char>
    void basic_printf_context<OutputIt, Char>::parse_flags(format_specs& specs,
                                                           const Char*& it,
                                                           const Char* end) {
      for (; it != end; ++it) {
        switch (*it) {
        case '-':
          specs.align = align::left;
          break;
        case '+':
          specs.sign = sign::plus;
          break;
        case '0':
          specs.fill[0] = '0';
          break;
        case ' ':
          specs.sign = sign::space;
          break;
        case '#':
          specs.alt = true;
          break;
        default:
          return;
        }
      }
    }
    
    template <typename OutputIt, typename Char>
    typename basic_printf_context<OutputIt, Char>::format_arg
    basic_printf_context<OutputIt, Char>::get_arg(int arg_index) {
      if (arg_index < 0)
        arg_index = parse_ctx_.next_arg_id();
      else
        parse_ctx_.check_arg_id(--arg_index);
      return internal::get_arg(*this, arg_index);
    }
    
    template <typename OutputIt, typename Char>
    int basic_printf_context<OutputIt, Char>::parse_header(
        const Char*& it, const Char* end, format_specs& specs) {
      int arg_index = -1;
      char_type c = *it;
      if (c >= '0' && c <= '9') {
        // Parse an argument index (if followed by '$') or a width possibly
        // preceded with '0' flag(s).
        internal::error_handler eh;
        int value = parse_nonnegative_int(it, end, eh);
        if (it != end && *it == '$') {  // value is an argument index
          ++it;
          arg_index = value;
        } else {
          if (c == '0') specs.fill[0] = '0';
          if (value != 0) {
            // Nonzero value means that we parsed width and don't need to
            // parse it or flags again, so return now.
            specs.width = value;
            return arg_index;
          }
        }
      }
      parse_flags(specs, it, end);
      // Parse width.
      if (it != end) {
        if (*it >= '0' && *it <= '9') {
          internal::error_handler eh;
          specs.width = parse_nonnegative_int(it, end, eh);
        } else if (*it == '*') {
          ++it;
          specs.width = static_cast<int>(visit_format_arg(
              internal::printf_width_handler<char_type>(specs), get_arg()));
        }
      }
      return arg_index;
    }
    
    template <typename OutputIt, typename Char>
    template <typename ArgFormatter>
    OutputIt basic_printf_context<OutputIt, Char>::format() {
      auto out = this->out();
      const Char* start = parse_ctx_.begin();
      const Char* end = parse_ctx_.end();
      auto it = start;
      while (it != end) {
        char_type c = *it++;
        if (c != '%') continue;
        if (it != end && *it == c) {
          out = std::copy(start, it, out);
          start = ++it;
          continue;
        }
        out = std::copy(start, it - 1, out);
    
        format_specs specs;
        specs.align = align::right;
    
        // Parse argument index, flags and width.
        int arg_index = parse_header(it, end, specs);
        if (arg_index == 0) on_error("argument index out of range");
    
        // Parse precision.
        if (it != end && *it == '.') {
          ++it;
          c = it != end ? *it : 0;
          if ('0' <= c && c <= '9') {
            internal::error_handler eh;
            specs.precision = parse_nonnegative_int(it, end, eh);
          } else if (c == '*') {
            ++it;
            specs.precision =
                static_cast<int>(visit_format_arg(internal::printf_precision_handler(), get_arg()));
          } else {
            specs.precision = 0;
          }
        }
    
        format_arg arg = get_arg(arg_index);
        if (specs.alt && visit_format_arg(internal::is_zero_int(), arg))
          specs.alt = false;
        if (specs.fill[0] == '0') {
          if (arg.is_arithmetic())
            specs.align = align::numeric;
          else
            specs.fill[0] = ' ';  // Ignore '0' flag for non-numeric types.
        }
    
        // Parse length and convert the argument to the required type.
        c = it != end ? *it++ : 0;
        char_type t = it != end ? *it : 0;
        using internal::convert_arg;
        switch (c) {
        case 'h':
          if (t == 'h') {
            ++it;
            t = it != end ? *it : 0;
            convert_arg<signed char>(arg, t);
          } else {
            convert_arg<short>(arg, t);
          }
          break;
        case 'l':
          if (t == 'l') {
            ++it;
            t = it != end ? *it : 0;
            convert_arg<long long>(arg, t);
          } else {
            convert_arg<long>(arg, t);
          }
          break;
        case 'j':
          convert_arg<intmax_t>(arg, t);
          break;
        case 'z':
          convert_arg<std::size_t>(arg, t);
          break;
        case 't':
          convert_arg<std::ptrdiff_t>(arg, t);
          break;
        case 'L':
          // printf produces garbage when 'L' is omitted for long double, no
          // need to do the same.
          break;
        default:
          --it;
          convert_arg<void>(arg, c);
        }
    
        // Parse type.
        if (it == end) FMT_THROW(format_error("invalid format string"));
        specs.type = static_cast<char>(*it++);
        if (arg.is_integral()) {
          // Normalize type.
          switch (specs.type) {
          case 'i':
          case 'u':
            specs.type = 'd';
            break;
          case 'c':
            visit_format_arg(internal::char_converter<basic_printf_context>(arg),
                             arg);
            break;
          }
        }
    
        start = it;
    
        // Format argument.
        visit_format_arg(ArgFormatter(out, specs, *this), arg);
      }
      return std::copy(start, it, out);
    }
    
    template <typename Char>
    using basic_printf_context_t =
        basic_printf_context<std::back_insert_iterator<internal::buffer<Char>>,
                             Char>;
    
    using printf_context = basic_printf_context_t<char>;
    using wprintf_context = basic_printf_context_t<wchar_t>;
    
    using printf_args = basic_format_args<printf_context>;
    using wprintf_args = basic_format_args<wprintf_context>;
    
    /**
      \rst
      Constructs an `~fmt::format_arg_store` object that contains references to
      arguments and can be implicitly converted to `~fmt::printf_args`.
      \endrst
     */
    template <typename... Args>
    inline format_arg_store<printf_context, Args...> make_printf_args(
        const Args&... args) {
      return {args...};
    }
    
    /**
      \rst
      Constructs an `~fmt::format_arg_store` object that contains references to
      arguments and can be implicitly converted to `~fmt::wprintf_args`.
      \endrst
     */
    template <typename... Args>
    inline format_arg_store<wprintf_context, Args...> make_wprintf_args(
        const Args&... args) {
      return {args...};
    }
    
    template <typename S, typename Char = char_t<S>>
    inline std::basic_string<Char> vsprintf(
        const S& format, basic_format_args<basic_printf_context_t<Char>> args) {
      basic_memory_buffer<Char> buffer;
      printf(buffer, to_string_view(format), args);
      return to_string(buffer);
    }
    
    /**
      \rst
      Formats arguments and returns the result as a string.
    
      **Example**::
    
        std::string message = fmt::sprintf("The answer is %d", 42);
      \endrst
    */
    template <typename S, typename... Args,
              typename Char = enable_if_t<internal::is_string<S>::value, char_t<S>>>
    inline std::basic_string<Char> sprintf(const S& format, const Args&... args) {
      using context = basic_printf_context_t<Char>;
      return vsprintf(to_string_view(format), {make_format_args<context>(args...)});
    }
    
    template <typename S, typename Char = char_t<S>>
    inline int vfprintf(std::FILE* f, const S& format,
                        basic_format_args<basic_printf_context_t<Char>> args) {
      basic_memory_buffer<Char> buffer;
      printf(buffer, to_string_view(format), args);
      std::size_t size = buffer.size();
      return std::fwrite(buffer.data(), sizeof(Char), size, f) < size
                 ? -1
                 : static_cast<int>(size);
    }
    
    /**
      \rst
      Prints formatted data to the file *f*.
    
      **Example**::
    
        fmt::fprintf(stderr, "Don't %s!", "panic");
      \endrst
     */
    template <typename S, typename... Args,
              typename Char = enable_if_t<internal::is_string<S>::value, char_t<S>>>
    inline int fprintf(std::FILE* f, const S& format, const Args&... args) {
      using context = basic_printf_context_t<Char>;
      return vfprintf(f, to_string_view(format),
                      {make_format_args<context>(args...)});
    }
    
    template <typename S, typename Char = char_t<S>>
    inline int vprintf(const S& format,
                       basic_format_args<basic_printf_context_t<Char>> args) {
      return vfprintf(stdout, to_string_view(format), args);
    }
    
    /**
      \rst
      Prints formatted data to ``stdout``.
    
      **Example**::
    
        fmt::printf("Elapsed time: %.2f seconds", 1.23);
      \endrst
     */
    template <typename S, typename... Args,
              FMT_ENABLE_IF(internal::is_string<S>::value)>
    inline int printf(const S& format_str, const Args&... args) {
      using context = basic_printf_context_t<char_t<S>>;
      return vprintf(to_string_view(format_str),
                     {make_format_args<context>(args...)});
    }
    
    template <typename S, typename Char = char_t<S>>
    inline int vfprintf(std::basic_ostream<Char>& os, const S& format,
                        basic_format_args<basic_printf_context_t<Char>> args) {
      basic_memory_buffer<Char> buffer;
      printf(buffer, to_string_view(format), args);
      internal::write(os, buffer);
      return static_cast<int>(buffer.size());
    }
    
    /** Formats arguments and writes the output to the range. */
    template <typename ArgFormatter, typename Char,
              typename Context =
                  basic_printf_context<typename ArgFormatter::iterator, Char>>
    typename ArgFormatter::iterator vprintf(internal::buffer<Char>& out,
                                            basic_string_view<Char> format_str,
                                            basic_format_args<Context> args) {
      typename ArgFormatter::iterator iter(out);
      Context(iter, format_str, args).template format<ArgFormatter>();
      return iter;
    }
    
    /**
      \rst
      Prints formatted data to the stream *os*.
    
      **Example**::
    
        fmt::fprintf(cerr, "Don't %s!", "panic");
      \endrst
     */
    template <typename S, typename... Args, typename Char = char_t<S>>
    inline int fprintf(std::basic_ostream<Char>& os, const S& format_str,
                       const Args&... args) {
      using context = basic_printf_context_t<Char>;
      return vfprintf(os, to_string_view(format_str),
                      {make_format_args<context>(args...)});
    }
    FMT_END_NAMESPACE
    
    #endif  // FMT_PRINTF_H_