Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
GSRP TDOA
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Maxence Ferrari
GSRP TDOA
Commits
941531f8
Commit
941531f8
authored
1 year ago
by
ferrari
Browse files
Options
Downloads
Patches
Plain Diff
Added error estimation
parent
e2d96a7b
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
gsrp_tdoa_hyperres.py
+15
-12
15 additions, 12 deletions
gsrp_tdoa_hyperres.py
with
15 additions
and
12 deletions
gsrp_tdoa_hyperres.py
+
15
−
12
View file @
941531f8
...
...
@@ -105,7 +105,7 @@ def corr(data, pos, w_size, max_tdoa, decimate=1, mode='prepare', hyper=True, ve
from
sklearn.pipeline
import
Pipeline
from
sklearn.preprocessing
import
PolynomialFeatures
tdoas2
=
np
.
zeros
((
len
(
pos
),
num_channel_pairs
+
2
),
np
.
float32
)
tdoas2
=
np
.
zeros
((
len
(
pos
),
num_channel_pairs
+
2
+
(
num_channels
-
1
)
**
2
),
np
.
float32
)
poly
=
PolynomialFeatures
(
2
)
lin
=
LinearRegression
()
pipe
=
Pipeline
([(
'
poly
'
,
poly
),
(
'
lin
'
,
lin
)])
...
...
@@ -124,7 +124,8 @@ def corr(data, pos, w_size, max_tdoa, decimate=1, mode='prepare', hyper=True, ve
der
[
ind
]
=
coef
[
num_channels
:]
poly_min
=
np
.
linalg
.
lstsq
(
der
+
der
.
T
,
-
coef
[
1
:
num_channels
],
rcond
=
None
)[
0
]
with
np
.
errstate
(
divide
=
'
ignore
'
,
invalid
=
'
ignore
'
):
return
np
.
log10
(
pipe
.
predict
(
poly_min
[
np
.
newaxis
]).
item
()),
mat
@
(
poly_min
+
mean
)
return
np
.
log10
(
pipe
.
predict
(
poly_min
[
np
.
newaxis
]).
item
()),
mat
@
(
poly_min
+
mean
),
\
1
/
np
.
sqrt
(
abs
(
der
+
der
.
T
)
/
1e-6
).
ravel
()
cc
=
np
.
empty
((
num_channel_pairs
,
dw_size
),
np
.
float32
)
for
i
in
trange
(
len
(
pos
)):
...
...
@@ -152,7 +153,8 @@ def corr(data, pos, w_size, max_tdoa, decimate=1, mode='prepare', hyper=True, ve
if
hyper
:
with
np
.
errstate
(
divide
=
'
ignore
'
):
tdoas2
[
i
,
:
2
],
tdoas2
[
i
,
2
:]
=
_hyperres
(
tdoas
[
i
,
2
:],
cc
)
tdoas2
[
i
,
:
2
],
tdoas2
[
i
,
2
:
num_channel_pairs
+
2
],
tdoas2
[
i
,
num_channel_pairs
+
2
:]
=
\
_hyperres
(
tdoas
[
i
,
2
:],
cc
)
tdoas2
[
i
,
1
]
+=
maxs
tdoas
[:,
:
2
]
*=
20
if
mode
==
'
smart
'
:
...
...
@@ -160,7 +162,8 @@ def corr(data, pos, w_size, max_tdoa, decimate=1, mode='prepare', hyper=True, ve
f
'
{
count
}
out of
{
len
(
pos
)
}
TDOA have been fully computed
{
BColors
.
ENDC
}
'
)
if
hyper
:
tdoas2
[:,
:
2
]
*=
20
return
np
.
hstack
((
np
.
expand_dims
(
pos
,
-
1
),
tdoas
)),
np
.
hstack
((
np
.
expand_dims
(
pos
,
-
1
),
tdoas2
))
return
np
.
hstack
((
np
.
expand_dims
(
pos
,
-
1
),
tdoas
)),
np
.
hstack
((
np
.
expand_dims
(
pos
,
-
1
),
tdoas2
)),
\
'
err_norm
'
+
poly
.
get_feature_names_out
([
f
'
t0
{
i
}
'
for
i
in
range
(
1
,
num_channels
)])
else
:
return
np
.
hstack
((
np
.
expand_dims
(
pos
,
-
1
),
tdoas
))
...
...
@@ -227,9 +230,9 @@ def main(args):
if
args
.
no_hyperres
:
result1
=
results
else
:
result1
,
result2
=
results
result1
,
result2
,
err_names
=
results
result2
[:,
0
]
/=
sr
result2
[:,
3
:]
/=
sr
if
args
.
temporal
else
sr
/
args
.
decimate
result2
[:,
3
:
-
len
(
err_names
)
]
/=
sr
if
args
.
temporal
else
sr
/
args
.
decimate
result1
[:,
0
]
/=
sr
result1
[:,
3
:]
/=
sr
if
args
.
temporal
else
sr
/
args
.
decimate
columns
=
'
,
'
.
join
([
'
pos
'
,
'
db_norm
'
,
'
db
'
]
+
[
f
'
t
{
i
}{
j
}
'
for
i
,
j
in
combinations
(
range
(
sound
.
shape
[
1
]),
2
)])
...
...
@@ -245,16 +248,16 @@ def main(args):
if
args
.
no_hyperres
:
df
=
DataFrame
(
result1
,
columns
=
columns
)
elif
args
.
wide
:
columns
=
columns
+
[
'
h_
'
+
c
for
c
in
columns
[
1
:]]
columns
=
columns
+
[
'
h_
'
+
c
for
c
in
columns
[
1
:]]
+
err_names
df
=
DataFrame
(
np
.
concatenate
([
result1
,
result2
[:,
1
:]],
axis
=
1
),
columns
=
columns
)
else
:
if
ext
in
(
'
xls
'
,
'
xlsx
'
,
'
ods
'
):
from
pandas
import
ExcelWriter
with
ExcelWriter
(
args
.
outfile
)
as
writer
:
DataFrame
(
result1
,
columns
=
columns
).
to_excel
(
writer
,
sheet_name
=
'
Normal
'
)
DataFrame
(
result2
,
columns
=
columns
).
to_excel
(
writer
,
sheet_name
=
'
Hyperres
'
)
DataFrame
(
result2
,
columns
=
columns
+
err_names
).
to_excel
(
writer
,
sheet_name
=
'
Hyperres
'
)
return
0
columns
=
[(
h
,
c
)
for
h
in
(
'
normal
'
,
'
hyperres
'
)
for
c
in
columns
[
1
:]]
columns
=
[(
h
,
c
)
for
h
in
(
'
normal
'
,
'
hyperres
'
)
for
c
in
columns
[
1
:]]
+
[(
'
hyperres
'
,
e
)
for
e
in
err_names
]
df
=
DataFrame
(
np
.
concatenate
([
result1
[:,
1
:],
result2
[:,
1
:]],
axis
=
1
),
columns
=
MultiIndex
.
from_tuples
(
columns
),
index
=
result1
[:,
0
])
if
ext
in
(
'
h5
'
,
'
hdf
'
):
...
...
@@ -268,11 +271,11 @@ def main(args):
np
.
savetxt
(
args
.
outfile
,
result1
,
delimiter
=
'
,
'
,
header
=
columns
)
elif
args
.
wide
:
np
.
savetxt
(
args
.
outfile
,
np
.
concatenate
([
result1
,
result2
[:,
1
:]],
axis
=
1
),
delimiter
=
'
,
'
,
header
=
'
,h_
'
.
join
([
columns
]
+
columns
.
split
(
'
,
'
)[
1
:]))
header
=
'
,h_
'
.
join
([
columns
]
+
columns
.
split
(
'
,
'
)[
1
:]))
+
err_names
else
:
np
.
savetxt
(
args
.
outfile
,
np
.
concatenate
([
result1
,
result2
[:,
1
:]],
axis
=
1
),
delimiter
=
'
,
'
,
header
=
'
,
'
.
join
([
'
'
]
+
(
result1
.
shape
[
1
]
-
1
)
*
[
'
normal
'
]
+
(
result1
.
shape
[
1
]
-
1
)
*
[
'
hyperres
'
])
+
'
\n
'
+
'
,
'
+
columns
[
4
:]
+
'
,
'
+
columns
[
4
:],
comments
=
''
)
header
=
'
,
'
.
join
([
'
'
]
+
(
result1
.
shape
[
1
]
-
1
)
*
[
'
normal
'
]
+
(
result1
.
shape
[
1
]
-
1
+
len
(
err_names
)
)
*
[
'
hyperres
'
])
+
'
\n
'
+
'
,
'
+
columns
[
4
:]
+
'
,
'
+
columns
[
4
:]
+
err_names
,
comments
=
''
)
print
(
"
Done.
"
)
return
0
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment