Skip to content
Snippets Groups Projects
Commit 7b3e656c authored by ferrari's avatar ferrari
Browse files

Add smart method

parent d26361b0
No related branches found
No related tags found
No related merge requests found
......@@ -76,7 +76,7 @@ Other:
-e, --erase Erase existing outfile. If outfile exist and --erase
is not provide, the script will exit.
-n, --no-hyperres Disable the hyper resolution evalutation of the TDOA
-M {estimate,auto,on-the-fly,prepare}, --mode {estimate,auto,on-the-fly,prepare}
-M {smart,auto,on-the-fly,prepare}, --mode {smart,auto,on-the-fly,prepare}
How to explore the TDOA space (default: prepare).
'prepare' precomputes all the possible TDOA
pairs and then evaluate them. All the results are save
......@@ -84,8 +84,8 @@ Other:
'on-the-fly' compute the TDOA pairs at the same
time as it compute the loss function. Only the maximum
is saved. Can be slower than 'prepare'.
'estimate' try to reduce the number of TDOA to
evaluate.
'smart' gradually increase the search space dimension, '
reducing the number of tdoa to evaluate.
'auto' automatically try to pick the right
method.
......
c_corr.c 100755 → 100644
+ 13989
3153
View file @ 7b3e656c
Source diff could not be displayed: it is too large. Options to address this: view the blob.
......@@ -7,7 +7,6 @@ ctypedef fused npType1:
short
int
long
long long
float
double
......@@ -15,11 +14,11 @@ ctypedef fused npType2:
short
int
long
long long
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.embedsignature(True)
def c_corr_at(npType1[:,::1] cc, npType2[::1, :] taus):
total = taus.shape[1]
n_pair = taus.shape[0]
......@@ -38,34 +37,48 @@ def c_corr_at(npType1[:,::1] cc, npType2[::1, :] taus):
@cython.boundscheck(False)
@cython.wraparound(False)
def c_corr_all(npType1[:,::1] cc, npType2 max_tdoa, npType2 base_tdoa):
@cython.embedsignature(True)
cpdef c_corr_all(cc, npType2 max_tdoa, npType2 base_tdoa):
cdef float[:,::1] cc_mem = cc.astype(np.float32)
cdef double corr_val = 0.0
taus = np.zeros(cc.shape[0], int)
out_taus = np.zeros(cc.shape[0], int)
_c_corr_core(cc, taus, out_taus, corr_val, base_tdoa-1, base_tdoa, max_tdoa, cc.shape[1], cc.shape[0])
cdef long[::1] taus = np.zeros(cc.shape[0], int)
cdef long[::1] out_taus = np.zeros(cc.shape[0], int)
corr_val = _c_corr_core(cc_mem, taus, out_taus, corr_val, <long> base_tdoa-1, <long> base_tdoa,
<long> max_tdoa, <long> cc.shape[1], <long> cc.shape[0])
return np.log10(corr_val), out_taus
cdef long moduloNeg(long a, long b):
if a < 0:
return a + b
else:
return a
@cython.boundscheck(False)
@cython.wraparound(False)
def _c_corr_core(npType1[:,::1] cc, npType2[::1] taus, npType2[::1] out_taus, double val,
npType2 curr_tdoa, npType2 ind_tdoa, npType2 max_tdoa, npType2 win_size, npType2 n_pair):
if curr_tdoa < 0:
@cython.profile(True)
cdef double _c_corr_core(float[:,::1] cc, long[::1] taus, long[::1] out_taus, double val,
long curr_tdoa, long ind_tdoa, long max_tdoa, long win_size, long n_pair):
cdef int i0 = 1
cdef int j0 = 0
cdef double tmp_val = 0.0
if curr_tdoa < 0:
for i in range(ind_tdoa, n_pair):
taus[i] = taus[i0] - taus[j0]
i0 += 1
if i0 >= ind_tdoa:
j0 += 1
i0 = j0 + 1
val = cc[0, taus[0]]
tmp_val = cc[0, moduloNeg(taus[0], win_size)]
for i in range(1, n_pair):
val *= cc[i, taus[i] % win_size]
tmp_val *= cc[i, moduloNeg(taus[i], win_size)]
if val < tmp_val:
val = tmp_val
out_taus[:] = taus
return val
cdef int low = -max_tdoa
cdef int high = max_tdoa
cdef double tmp_val = 0
for i in range(curr_tdoa+1, ind_tdoa):
if low < taus[i] - max_tdoa:
low = -max_tdoa + taus[i]
......@@ -73,7 +86,39 @@ def _c_corr_core(npType1[:,::1] cc, npType2[::1] taus, npType2[::1] out_taus, do
high = max_tdoa + taus[i]
for t in range(low, high+1):
taus[curr_tdoa] = t
tmp_val = _c_corr_core(cc, taus, out_taus, val, curr_tdoa-1, ind_tdoa, max_size, win_size, n_pair)
val = _c_corr_core(cc, taus, out_taus, val, curr_tdoa-1, ind_tdoa, max_tdoa, win_size, n_pair)
return val
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.profile(True)
def _c_corr_core2(npType1[:,::1] cc, npType2[::1] taus, npType2[::1] out_taus, double val,
npType2 curr_tdoa, npType2 ind_tdoa, npType2 max_tdoa, npType2 win_size, npType2 n_pair):
cdef int i0 = 1
cdef int j0 = 0
cdef double tmp_val = 0.0
for i in range(ind_tdoa):
taus[i] = - max_tdoa - 1
cdef int level = 0
while level >= 0:
taus[level] += 1
if taus[level] > min(taus[:level]) + max_tdoa:
taus[level] = max(taus[:level]) - max_tdoa - 1
level -= 1
continue
level +=1
if level == ind_tdoa:
level -= 1
for i in range(ind_tdoa, n_pair):
taus[i] = taus[i0] - taus[j0]
i0 += 1
if i0 >= ind_tdoa:
j0 += 1
i0 = j0 + 1
tmp_val = cc[0, moduloNeg(taus[0], win_size)]
for i in range(1, n_pair):
tmp_val *= cc[i, moduloNeg(taus[i], win_size)]
if val < tmp_val:
val = tmp_val
out_taus[:] = taus
......
......@@ -2,5 +2,5 @@ from distutils.core import setup
from Cython.Build import cythonize
setup(
ext_modules = cythonize("c_corr.pyx", annotate=True)
ext_modules = cythonize("c_corr.pyx", annotate=True, compiler_directives={'language_level' : "3"})
)
\ No newline at end of file
import numpy as np
from math import ceil
class Operation:
__slots__ = 'op', 'left', 'right', 'lifetime'
def __init__(self, op, left, right, lifetime):
self.op = op
self.left = left
self.right = right
self.lifetime = lifetime
def __repr__(self):
return f'(op: {self.op}, l: {self.left}, r: {self.right}, lt: {self.lifetime})'
def __eq__(self, other):
if isinstance(other, str):
return self.op == other
elif isinstance(other, Operation):
return self.op == other.op and self.left == other.left and\
self.right == other.right and self.lifetime == other.lifetime
return False
def gen_tree(size):
tree = [list() for _ in range(size)]
tree[-1].append(list(range(size)))
for i in range(size-2, -1, -1):
m_len = i + 1
unused = []
for group in tree[i+1]:
if len(group) > m_len:
tree[i].append(group[:-1].copy())
unused.append(group[-1])
else:
tree[i].append(group.copy())
for group in tree[i]:
le = len(group)
if le < m_len:
group.extend(unused[:m_len-le])
unused = unused[m_len-le:]
if not len(unused):
break
if len(unused):
for j in range(ceil(len(unused)/m_len)):
tree[i].append(unused[j*m_len:(j+1)*m_len])
return tree
def op_tree(tree):
program = [list() for _ in range(len(tree))]
clean_list = [list() for _ in range(len(tree) + 1)]
program[0] = [Operation('mem', 0, group[0], len(tree)) for group in tree[0]]
for i in range(1, len(tree)):
for group in tree[i]:
if group[:-1] in tree[i-1]:
j = tree[i-1].index(group[:-1])
program[i-1][j].lifetime = i
program[i].append(Operation('mul', j, tree[0].index(group[-1:]), i))
else:
for j in range(i-1, -1, -1):
if group in tree[j]:
break
else:
raise KeyError(f'{group} not found in:\n{tree}')
program[i].append(Operation('mem', j, tree[j].index(group), i))
for i, step in enumerate(program):
for j, op in enumerate(step):
clean_list[op.lifetime].append((i, j))
return program, clean_list
def dep_tdoa(tij, nind, ntot):
i0 = 1
j0 = 0
for i in range(nind, ntot):
tij[i] = tij[i0] - tij[j0]
i0 += 1
if i0 >= nind:
j0 += 1
i0 = j0 + 1
def num_ind(i, j, nind):
return j*(nind-1) + i-1 - (j*(j+1))//2
def mul(mem1, mem2, cc, t_max, id1, id2, n_ind):
# assume len(id2) == 1
idx1, idx2 = np.meshgrid(np.arange(len(mem1[0])), np.arange(len(mem2[1])))
idx1, idx2 = idx1.ravel(), idx2.ravel()
out_tij = np.concatenate((mem1[1][idx1], mem2[1][idx2]), axis=-1)
mask = (np.abs(out_tij[:, :-1] - out_tij[:, -1:]) <= t_max).all(-1)
out_tij = out_tij[mask]
idx1, idx2 = idx1[mask], idx2[mask]
out_val = mem1[0][idx1] * mem2[0][idx2]
tij_dep = out_tij[:, :-1] - out_tij[:, -1:]
tij_dep *= np.array([1 if i > id2 else -1 for i in id1])
ch_dep = np.array([num_ind(i, id2, n_ind) if i > id2 else num_ind(id2, i, n_ind) for i in id1]) + n_ind
out_val *= cc[tij_dep, ch_dep].prod(-1)
return out_val, out_tij
def mask_val(mem, val):
mask = mem[0] >= val
return mem[0][mask], mem[1][mask]
def smart_gsrp(cc, n_ind, n_tot, t_max, tree, program, clean_list):
memory = dict()
val = 0
tij = np.zeros(n_tot, int)
for i, step in enumerate(program):
# increase dimensions
for j, op in enumerate(step):
if op == 'mem':
if i == 0:
memory[(0, j)] = (np.concatenate((cc[-t_max:, op.right], cc[:t_max + 1, op.right])),
np.arange(-t_max, t_max + 1).reshape(-1, 1))
else:
memory[(i, j)] = mask_val(memory[(op.left, op.right)], val)
else: # op == 'mul'
memory[(i, j)] = mul(mask_val(memory[(i-1, op.left)], val), mask_val(memory[(0, op.right)], val),
cc, t_max, tree[i - 1][op.left], tree[0][op.right][0], n_ind)
# find potential maximum
for j in range(len(step)):
tij[tree[i][j]] = memory[(i, j)][1][np.argmax(memory[(i, j)][0])]
dep_tdoa(tij, n_ind, n_tot)
val = cc[tij, np.arange(n_tot)].prod()
# print('tdoa:', tij, 'val:', val, 'mem size:', (lambda x: f'{x} ({100 * x / (2 * t_max + 1) ** i}%)')(sum(len(o[0]) for o in memory.values())))
# Mem clean up
for p in clean_list[i]:
del memory[p]
return val, tij
......@@ -10,6 +10,8 @@ from numpy.fft import rfft, irfft
import scipy.signal as sg
import soundfile as sf
import c_corr
from gsrp_smart_util import *
from math import ceil
from scipy.signal.windows import tukey
try:
......@@ -58,6 +60,7 @@ def corr(data, pos, w_size, max_tdoa, decimate=1, mode='prepare', hyper=True):
mat[k, j - 1] = 1
v1[k] = i
v2[k] = j
dw_size = w_size // decimate
if mode == 'prepare':
slices = slicer(-(cc_size // 2), cc_size // 2, (num_channels - 1), 16)
tausf = []
......@@ -66,10 +69,12 @@ def corr(data, pos, w_size, max_tdoa, decimate=1, mode='prepare', hyper=True):
taus2 = np.matmul(mat, taus)
tausf += [taus2[:, np.abs(taus2).max(0) <= cc_size // 2]]
tausf = np.hstack(tausf)
dw_size = w_size // decimate
tausf %= dw_size
elif mode == 'on-the-fly':
pass
elif mode == 'smart':
tree = gen_tree(num_channels - 1)
program, clean_list = op_tree(tree)
else:
raise ValueError(f'Unknown mode {mode}')
......@@ -94,8 +99,7 @@ def corr(data, pos, w_size, max_tdoa, decimate=1, mode='prepare', hyper=True):
der = np.zeros((num_channels - 1, num_channels - 1))
der[ind] = coef[4:]
poly_min = np.linalg.lstsq(der + der.T, -coef[1:4], rcond=None)[0] + mean
return pipe.predict(poly_min), poly_min
return pipe.predict(poly_min[np.newaxis]).item(), poly_min
cc = np.empty((num_channel_pairs, dw_size), np.float32)
for i in trange(len(pos)):
......@@ -109,7 +113,13 @@ def corr(data, pos, w_size, max_tdoa, decimate=1, mode='prepare', hyper=True):
tdoas[i, 0], index = c_corr.c_corr_at(cc, tausf)
tdoas[i, 1:] = ((tausf[:(num_channels - 1), index] + dw_size // 2) % dw_size) - dw_size // 2
elif mode == 'on-the-fly':
tdoas[i, 0], tdoas[i, 1:] = c_corr.c_corr_all(cc, cc_size//2, num_channels - 1)
tdoas[i, 0], tij = c_corr.c_corr_all(cc, cc_size//2, num_channels - 1)
tdoas[i, 1:] = tij[:(num_channels - 1)]
elif mode == 'smart':
maxs = cc.max(1, keepdims=True)
cc /= maxs
val, tij = smart_gsrp(cc.T, num_channels - 1, num_channel_pairs, cc_size // 2, tree, program, clean_list)
tdoas[i, 0], tdoas[i, 1:] = np.log10(val * maxs.prod()), tij[:(num_channels - 1)]
else:
raise ValueError(f'Unknown mode {mode}')
......@@ -122,9 +132,6 @@ def corr(data, pos, w_size, max_tdoa, decimate=1, mode='prepare', hyper=True):
return np.hstack((np.expand_dims(pos, -1), tdoas))
def main(args):
if args.erase and os.path.isfile(args.outfile):
print(f'{BColors.WARNING}{args.outfile} already exist and erase is not set {BColors.ENDC}')
......@@ -218,9 +225,7 @@ if __name__ == "__main__":
parser.add_argument('infile', type=str, help='The sound file to process.')
parser.add_argument('outfile', type=str, help='The text or npy file to write results to. Each row gives the '
'position (in samples), cross-correlation product, the independent '
'TDOAs (in samples), and TDOAs derived from the independent ones. '
'For plots, the panes give the cross-correlation product, '
'independent TDOAS and derived TDOAs from top to bottom.')
'TDOAs (in samples), and TDOAs derived from the independent ones. ')
group1 = parser.add_argument_group('Channels')
group1.add_argument('-c', '--channels', type=intlist, default=None,
......@@ -258,14 +263,15 @@ if __name__ == "__main__":
'--erase is not provide, the script will exit.')
group4.add_argument('-n', '--no-hyperres', action='store_True', help='Disable the hyper resolution evalutation of '
'the TDOA')
group4.add_argument('-M', '--mode', choices={'prepare', 'on-the-fly', 'estimate', 'auto'}, default='prepare',
group4.add_argument('-M', '--mode', choices={'prepare', 'on-the-fly', 'smart', 'auto'}, default='prepare',
help=f'R|How to explore the TDOA space (default: %(default)s).\n'
f'{BColors.BOLD}prepare{BColors.ENDC} precomputes all the possible TDOA pairs and then '
f'evaluate them. All the results are save in memory.\n'
f'{BColors.BOLD}on-the-fly{BColors.ENDC} compute the TDOA pairs at the same time as it '
f'compute the loss function. Only the maximum is saved. Can be slower than '
f'{BColors.BOLD}prepare{BColors.ENDC}.\n'
f'{BColors.BOLD}estimate{BColors.ENDC} try to reduce the number of TDOA to evaluate.\n'
f'{BColors.BOLD}smart{BColors.ENDC} gradually increase the search space dimension, '
f'reducing the number of tdoa to evaluate.\n'
f'{BColors.BOLD}auto{BColors.ENDC} automatically try to pick the right method.')
args = parser.parse_args()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment