Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
CARIMAM_DOCC10
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Maxence Ferrari
CARIMAM_DOCC10
Commits
5fa2a7b0
Commit
5fa2a7b0
authored
3 years ago
by
Maxence Ferrari
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
0943a7d0
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
forward_UpDimV2_long.py
+233
-0
233 additions, 0 deletions
forward_UpDimV2_long.py
with
233 additions
and
0 deletions
forward_UpDimV2_long.py
0 → 100644
+
233
−
0
View file @
5fa2a7b0
from
pathlib
import
Path
import
random
from
collections
import
defaultdict
from
PIL
import
Image
import
torch
import
torchvision
as
tv
import
torchelie.recipes
import
torchelie
as
tch
import
torchelie.callbacks.callbacks
as
tcb
import
argparse
import
numpy
as
np
import
soundfile
as
sf
import
os
import
scipy.signal
as
sg
from
tqdm
import
tqdm
,
trange
from
math
import
ceil
def
main
(
args
):
batch_size
=
64
num_feature
=
4096
num_classes
=
10
rng
=
np
.
random
.
RandomState
(
42
)
class
UpDimV2
(
torch
.
nn
.
Module
):
def
__init__
(
self
,
num_class
):
super
(
UpDimV2
,
self
).
__init__
()
self
.
activation
=
torch
.
nn
.
LeakyReLU
(
0.001
,
inplace
=
True
)
# Block 1D 1
self
.
conv11
=
torch
.
nn
.
Conv1d
(
1
,
32
,
3
,
1
,
1
)
self
.
norm11
=
torch
.
nn
.
BatchNorm1d
(
32
)
self
.
conv21
=
torch
.
nn
.
Conv1d
(
32
,
32
,
3
,
2
,
1
)
self
.
norm21
=
torch
.
nn
.
BatchNorm1d
(
32
)
self
.
skip11
=
torch
.
nn
.
Conv1d
(
1
,
32
,
1
,
2
)
# Block 1D 2
self
.
conv12
=
torch
.
nn
.
Conv1d
(
32
,
64
,
3
,
2
,
1
)
self
.
norm12
=
torch
.
nn
.
BatchNorm1d
(
64
)
self
.
conv22
=
torch
.
nn
.
Conv1d
(
64
,
128
,
3
,
2
,
1
)
self
.
norm22
=
torch
.
nn
.
BatchNorm1d
(
128
)
self
.
skip12
=
torch
.
nn
.
Conv1d
(
32
,
128
,
1
,
4
)
# Block 2D 1
self
.
conv31
=
torch
.
nn
.
Conv2d
(
1
,
32
,
3
,
1
,
1
)
self
.
norm31
=
torch
.
nn
.
BatchNorm2d
(
32
)
self
.
conv41
=
torch
.
nn
.
Conv2d
(
32
,
32
,
3
,
2
,
1
)
self
.
norm41
=
torch
.
nn
.
BatchNorm2d
(
32
)
self
.
skip21
=
torch
.
nn
.
Conv2d
(
1
,
32
,
1
,
2
)
# Block 2D 2
self
.
conv32
=
torch
.
nn
.
Conv2d
(
32
,
64
,
3
,
2
,
1
)
self
.
norm32
=
torch
.
nn
.
BatchNorm2d
(
64
)
self
.
conv42
=
torch
.
nn
.
Conv2d
(
64
,
128
,
3
,
2
,
1
)
self
.
norm42
=
torch
.
nn
.
BatchNorm2d
(
128
)
self
.
skip22
=
torch
.
nn
.
Conv2d
(
32
,
128
,
1
,
4
)
# Block 3D 1
self
.
conv51
=
torch
.
nn
.
Conv3d
(
1
,
32
,
3
,
(
1
,
2
,
1
),
1
)
self
.
norm51
=
torch
.
nn
.
BatchNorm3d
(
32
)
self
.
conv61
=
torch
.
nn
.
Conv3d
(
32
,
64
,
3
,
2
,
1
)
self
.
norm61
=
torch
.
nn
.
BatchNorm3d
(
64
)
self
.
skip31
=
torch
.
nn
.
Conv3d
(
1
,
64
,
1
,
(
2
,
4
,
2
))
# Block 3D 2
self
.
conv52
=
torch
.
nn
.
Conv3d
(
64
,
128
,
3
,
2
,
1
)
self
.
norm52
=
torch
.
nn
.
BatchNorm3d
(
128
)
self
.
conv62
=
torch
.
nn
.
Conv3d
(
128
,
256
,
3
,
2
,
1
)
self
.
norm62
=
torch
.
nn
.
BatchNorm3d
(
256
)
self
.
skip32
=
torch
.
nn
.
Conv3d
(
64
,
256
,
1
,
4
)
# Fully connected
self
.
soft_max
=
torch
.
nn
.
Softmax
(
-
1
)
# If the time stride is too big, the softmax will be done on a singleton
# which always ouput a 1
self
.
fc1
=
torch
.
nn
.
Linear
(
4096
,
1024
)
self
.
fc2
=
torch
.
nn
.
Linear
(
1024
,
512
)
self
.
fc3
=
torch
.
nn
.
Linear
(
512
,
num_class
)
def
forward
(
self
,
x
):
# Block 1D 1
out
=
self
.
conv11
(
x
)
out
=
self
.
norm11
(
out
)
out
=
self
.
activation
(
out
)
out
=
self
.
conv21
(
out
)
out
=
self
.
norm21
(
out
)
skip
=
self
.
skip11
(
x
)
out
=
self
.
activation
(
out
+
skip
)
# Block 1D 2
skip
=
self
.
skip12
(
out
)
out
=
self
.
conv12
(
out
)
out
=
self
.
norm12
(
out
)
out
=
self
.
activation
(
out
)
out
=
self
.
conv22
(
out
)
out
=
self
.
norm22
(
out
)
out
=
self
.
activation
(
out
+
skip
)
# Block 2D 1
out
=
out
.
reshape
((
lambda
b
,
c
,
h
:
(
b
,
1
,
c
,
h
))(
*
out
.
shape
))
skip
=
self
.
skip21
(
out
)
out
=
self
.
conv31
(
out
)
out
=
self
.
norm31
(
out
)
out
=
self
.
activation
(
out
)
out
=
self
.
conv41
(
out
)
out
=
self
.
norm41
(
out
)
out
=
self
.
activation
(
out
+
skip
)
# Block 2D 2
skip
=
self
.
skip22
(
out
)
out
=
self
.
conv32
(
out
)
out
=
self
.
norm32
(
out
)
out
=
self
.
activation
(
out
)
out
=
self
.
conv42
(
out
)
out
=
self
.
norm42
(
out
)
out
=
self
.
activation
(
out
+
skip
)
# Block 3D 1
out
=
out
.
reshape
((
lambda
b
,
c
,
w
,
h
:
(
b
,
1
,
c
,
w
,
h
))(
*
out
.
shape
))
skip
=
self
.
skip31
(
out
)
out
=
self
.
conv51
(
out
)
out
=
self
.
norm51
(
out
)
out
=
self
.
activation
(
out
)
out
=
self
.
conv61
(
out
)
out
=
self
.
norm61
(
out
)
out
=
self
.
activation
(
out
+
skip
)
# Block 3D 2
skip
=
self
.
skip32
(
out
)
out
=
self
.
conv52
(
out
)
out
=
self
.
norm52
(
out
)
out
=
self
.
activation
(
out
)
out
=
self
.
conv62
(
out
)
out
=
self
.
norm62
(
out
)
out
=
self
.
activation
(
out
+
skip
)
# Fully connected
out
=
torch
.
max
(
self
.
soft_max
(
out
),
-
1
)[
0
].
reshape
(
-
1
,
4096
)
out
=
self
.
activation
(
self
.
fc1
(
out
))
out
=
self
.
activation
(
self
.
fc2
(
out
))
return
self
.
fc3
(
out
)
model
=
torch
.
nn
.
DataParallel
(
UpDimV2
(
num_classes
))
model
.
load_state_dict
((
torch
.
load
(
args
.
weight
)[
'
model
'
]))
model
.
to
(
'
cuda
'
)
model
.
eval
()
if
os
.
path
.
isfile
(
args
.
input_path
):
if
args
.
input_path
.
endswith
(
'
.npy
'
):
click_data
=
np
.
load
(
args
.
input_path
)
click_data
=
click_data
[:,
click_data
.
shape
[
1
]
//
2
-
num_feature
//
2
:
click_data
.
shape
[
1
]
//
2
+
num_feature
//
2
]
with
torch
.
no_grad
():
preds
=
np
.
empty
((
len
(
click_data
),
num_classes
))
for
i
in
trange
(
len
(
click_data
)
//
batch_size
,
desc
=
f
'
file:
{
args
.
input_path
}
'
):
clicks
=
click_data
[
i
*
batch_size
:(
i
+
1
)
*
batch_size
]
clicks
=
torch
.
from_numpy
(((
clicks
-
clicks
.
mean
(
-
1
,
keepdims
=
True
))
/
(
clicks
.
std
(
-
1
,
keepdims
=
True
)
+
1e-18
))[:,
np
.
newaxis
]).
to
(
'
cuda
'
).
float
()
preds
[
i
*
batch_size
:(
i
+
1
)
*
batch_size
]
=
model
(
clicks
).
cpu
().
numpy
()
if
not
(
len
(
click_data
)
%
batch_size
):
clicks
=
click_data
[
-
(
len
(
click_data
)
%
batch_size
):]
clicks
=
torch
.
from_numpy
(((
clicks
-
clicks
.
mean
(
-
1
,
keepdims
=
True
))
/
(
clicks
.
std
(
-
1
,
keepdims
=
True
)
+
1e-18
))[:,
np
.
newaxis
]).
to
(
'
cuda
'
).
float
()
preds
[
-
(
len
(
click_data
)
%
batch_size
):]
=
model
(
clicks
).
cpu
().
numpy
()
np
.
savetxt
(
args
.
input_path
.
rsplit
(
'
.
'
,
1
)[
0
]
+
args
.
suffix
,
preds
)
else
:
song
,
sr
=
sf
.
read
(
args
.
input_path
,
always_2d
=
True
)
song
=
song
[:,
args
.
channel
]
sos
=
sg
.
butter
(
3
,
200_000
/
sr
,
'
lowpass
'
,
output
=
'
sos
'
)
song
=
sg
.
sosfiltfilt
(
sos
,
song
)
song
=
sg
.
resample
(
song
,
int
(
200_000
/
sr
*
len
(
song
)))
batch_pos
=
np
.
linspace
(
0
,
len
(
song
)
-
num_feature
,
args
.
overlap
*
batch_size
*
ceil
((
len
(
song
)
//
num_feature
+
1
)
/
batch_size
)).
astype
(
int
)
with
torch
.
no_grad
():
preds
=
np
.
empty
((
len
(
batch_pos
)
//
batch_size
,
batch_size
,
num_classes
))
for
i
,
pos
in
enumerate
(
tqdm
(
batch_pos
.
reshape
(
-
1
,
batch_size
),
desc
=
f
'
file:
{
args
.
input_path
}
'
)):
clicks
=
np
.
array
([
song
[
p
:
p
+
num_feature
]
for
p
in
pos
])
clicks
=
torch
.
from_numpy
(((
clicks
-
clicks
.
mean
(
-
1
,
keepdims
=
True
))
/
(
clicks
.
std
(
-
1
,
keepdims
=
True
)
+
1e-18
))[:,
np
.
newaxis
]).
to
(
'
cuda
'
).
float
()
preds
[
i
]
=
model
(
clicks
).
cpu
().
numpy
()
np
.
savetxt
(
args
.
input_path
.
rsplit
(
'
.
'
,
1
)[
0
]
+
args
.
suffix
,
preds
.
reshape
(
-
1
,
num_classes
))
else
:
for
d
,
_
,
dire
in
os
.
walk
(
args
.
input_path
):
if
args
.
output_path
is
not
None
:
dout
=
os
.
path
.
join
(
args
.
output_path
,
d
[
len
(
args
.
input_path
):])
os
.
makedirs
(
dout
,
exist_ok
=
True
)
for
f
in
tqdm
(
dire
,
desc
=
f
'
directory:
{
d
}
'
):
if
f
.
rsplit
(
'
.
'
,
1
)[
-
1
].
lower
()
not
in
[
'
wav
'
,
'
mp3
'
,
'
ogg
'
,
'
flac
'
]:
continue
try
:
current_file
=
os
.
path
.
join
(
d
,
f
)
if
args
.
output_path
is
None
:
out_file
=
os
.
path
.
join
(
d
,
f
).
rsplit
(
'
.
'
,
1
)[
0
]
+
args
.
suffix
else
:
out_file
=
os
.
path
.
join
(
dout
,
f
).
rsplit
(
'
.
'
,
1
)[
0
]
+
args
.
suffix
if
os
.
path
.
isfile
(
out_file
)
and
args
.
erase
:
continue
if
args
.
undersample
is
not
None
:
if
np
.
random
.
random_sample
()
>
args
.
undersample
/
100
:
continue
song
,
sr
=
sf
.
read
(
current_file
,
always_2d
=
True
)
song
=
song
[:,
args
.
channel
]
sos
=
sg
.
butter
(
3
,
200_000
/
sr
,
'
lowpass
'
,
output
=
'
sos
'
)
song
=
sg
.
sosfiltfilt
(
sos
,
song
)
song
=
sg
.
resample
(
song
,
int
(
200_000
/
sr
*
len
(
song
)))
batch_pos
=
np
.
linspace
(
0
,
len
(
song
)
-
num_feature
,
args
.
overlap
*
batch_size
*
ceil
((
len
(
song
)
//
num_feature
+
1
)
/
batch_size
)).
astype
(
int
)
with
torch
.
no_grad
():
preds
=
np
.
empty
((
len
(
batch_pos
)
//
batch_size
,
batch_size
,
num_classes
))
for
i
,
pos
in
enumerate
(
tqdm
(
batch_pos
.
reshape
(
-
1
,
batch_size
),
desc
=
f
'
file:
{
current_file
}
'
)):
clicks
=
np
.
array
([
song
[
p
:
p
+
num_feature
]
for
p
in
pos
])
clicks
=
torch
.
from_numpy
(((
clicks
-
clicks
.
mean
(
-
1
,
keepdims
=
True
))
/
(
clicks
.
std
(
-
1
,
keepdims
=
True
)
+
1e-18
))[:,
np
.
newaxis
]).
to
(
'
cuda
'
).
float
()
preds
[
i
]
=
model
(
clicks
).
cpu
().
numpy
()
np
.
savetxt
(
out_file
,
preds
.
reshape
(
-
1
,
num_classes
))
except
Exception
as
e
:
print
(
f
'
error with file
{
current_file
}
:
{
e
}
'
)
if
__name__
==
'
__main__
'
:
parser
=
argparse
.
ArgumentParser
(
formatter_class
=
argparse
.
ArgumentDefaultsHelpFormatter
,
description
=
"
Analyse wav(s) and return logits prediction. Use a softmax to have probabilities. The classes order is Gg, Gma, La, Mb, Me, Pm, Ssp, UDA, UDB, Zc
"
)
parser
.
add_argument
(
"
input_path
"
,
type
=
str
,
help
=
"
Folder or path
"
)
parser
.
add_argument
(
"
--weight
"
,
type
=
str
,
default
=
'
best_acc_updimv2_3dlong.pth
'
,
help
=
"
Model weight
"
)
parser
.
add_argument
(
"
--suffix
"
,
type
=
str
,
default
=
'
.pred
'
,
help
=
"
Suffix of the output file
"
)
parser
.
add_argument
(
"
--channel
"
,
type
=
int
,
default
=
0
,
help
=
"
Channel used for prediction
"
)
parser
.
add_argument
(
"
--overlap
"
,
type
=
int
,
default
=
2
,
help
=
"
Overlap factor of prediction windows (win_size/hop_size)
"
)
parser
.
add_argument
(
"
--undersample
"
,
type
=
float
,
default
=
None
,
help
=
"
In case of folders, only undersample percent of files will be computed
"
)
parser
.
add_argument
(
"
--output_path
"
,
type
=
str
,
help
=
"
Path to root dir of ouput. Only used if input is folder. Default to input_path
"
)
parser
.
add_argument
(
"
--erase
"
,
action
=
'
store_false
'
,
help
=
"
If out_file exist and erase not specified, file will be skip. (Only for folder input)
"
)
args
=
parser
.
parse_args
()
main
(
args
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment