Skip to content
Snippets Groups Projects
Select Git revision
  • correlation
  • master default protected
  • 24-non-negative-omp
  • 15-integration-sota
  • 20-coherence-des-arbres-de-predictions
  • 19-add-some-tests
  • 13-visualization
  • 17-adding-new-datasets
  • 12-experiment-pipeline
  • 14-correction-of-multiclass-classif
  • archive/10-gridsearching-of-the-base-forest
  • archive/farah_notation_and_related_work
  • archive/wip_clean_scripts
  • archive/4-implement-omp_forest_classifier
  • archive/5-add-plots-2
  • archive/Leo_Add_first_notebook
16 results

diamonds

  • Clone with SSH
  • Clone with HTTPS
  • Mono- and Multi-view classification benchmark

    This project aims to be an easy-to use solution to run a prior benchmark on a dataset abd evaluate mono- and multi-view algorithms capacity to classify it correctly.

    Getting Started

    In order to run it you'll need to try on simulated data with the command

    python multiview-machine-learning-omis/Code/MonoMultiViewClassifiers/ExecClassif.py -log

    Results will be stored in multiview-machine-learning-omis/Code/MonoMultiViewClassifiers/Results/

    Prerequisites

    To be able to use this project, you'll need :

    And the following python modules :

    • pyscm - Set Covering Machine, Marchand, M., & Taylor, J. S. (2003) by A.Drouin, F.Brochu, G.Letarte St-Pierre, M.Osseni, P-L.Plante
    • numpy, scipy
    • matplotlib - Used to plot results
    • sklearn - Used for the monoview classifiers
    • joblib - Used to compute on multiple threads
    • h5py - Used to generate HDF5 datasets on hard drive and use them to sapre RAM
    • (argparse - Used to parse the input args)
    • (logging - Used to generate log)

    They are all tested in multiview-machine-mearning-omis/Code/MonoMutliViewClassifiers/Versions.py which is automatically checked each time you run the ExecClassif script

    Installing

    No installation is needed, just the prerequisites.

    Running the tests

    In order to run it you'll need to try on simulated data with the command

    python multiview-machine-learning-omis/Code/MonoMultiViewClassifiers/ExecClassif.py -log

    Results will be stored in multiview-machine-learning-omis/Code/MonoMultiViewClassifiers/Results/

    Authors

    • Baptiste BAUVIN