Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
bolsonaro
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Luc Giffon
bolsonaro
Merge requests
!9
Resolve "Experiment pipeline"
Code
Review changes
Check out branch
Download
Patches
Plain diff
Expand sidebar
Merged
Resolve "Experiment pipeline"
12-experiment-pipeline
into
master
Overview
0
Commits
38
Pipelines
0
Changes
13
Merged
Charly Lamothe
requested to merge
12-experiment-pipeline
into
master
5 years ago
Overview
0
Commits
38
Pipelines
0
Changes
13
Closes
#12 (closed)
Edited
5 years ago
by
Charly Lamothe
0
0
Merge request reports
Viewing commit
21ccc627
Prev
Next
Show latest version
13 files
+
14
−
12
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
13
21ccc627
- Add a temp fix for the subset used in base and random strategies;
· 21ccc627
Charly Lamothe
authored
5 years ago
- Add new results for stage4.
code/bolsonaro/trainer.py
+
7
−
3
View file @ 21ccc627
Edit in single-file editor
Open in Web IDE
Show full file
@@ -42,10 +42,14 @@ class Trainer(object):
def
base_score_metric_name
(
self
):
return
self
.
_base_score_metric_name
def
init
(
self
,
model
):
def
init
(
self
,
model
,
subsets_used
=
'
train,dev
'
):
if
type
(
model
)
in
[
RandomForestRegressor
,
RandomForestClassifier
]:
self
.
_X_forest
=
self
.
_dataset
.
X_train
self
.
_y_forest
=
self
.
_dataset
.
y_train
if
subsets_used
==
'
train,dev
'
:
self
.
_X_forest
=
self
.
_dataset
.
X_train
self
.
_y_forest
=
self
.
_dataset
.
y_train
else
:
self
.
_X_forest
=
np
.
concatenate
([
self
.
_dataset
.
X_train
,
self
.
_dataset
.
X_dev
])
self
.
_y_forest
=
np
.
concatenate
([
self
.
_dataset
.
y_train
,
self
.
_dataset
.
y_dev
])
self
.
_logger
.
debug
(
'
Fitting the forest on train subset
'
)
elif
model
.
models_parameters
.
subsets_used
==
'
train,dev
'
:
self
.
_X_forest
=
self
.
_dataset
.
X_train
Loading