Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
bolsonaro
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Luc Giffon
bolsonaro
Merge requests
!23
Resolve "integration-sota"
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Resolve "integration-sota"
15-integration-sota
into
master
Overview
0
Commits
23
Pipelines
0
Changes
1
Merged
Charly Lamothe
requested to merge
15-integration-sota
into
master
5 years ago
Overview
0
Commits
23
Pipelines
0
Changes
1
Expand
Closes
#15 (closed)
0
0
Merge request reports
Viewing commit
bbad0e52
Prev
Next
Show latest version
1 file
+
102
−
0
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
bbad0e52
results_to_csv script
· bbad0e52
Luc Giffon
authored
5 years ago
code/vizualisation/results_to_csv.py
0 → 100644
+
102
−
0
Options
from
pathlib
import
Path
import
os
import
pandas
as
pd
from
pprint
import
pprint
import
pickle
from
collections
import
defaultdict
from
dotenv
import
load_dotenv
,
find_dotenv
dct_experiment_id_subset
=
dict
((
str
(
idx
),
"
train+dev/train+dev
"
)
for
idx
in
range
(
1
,
9
))
dct_experiment_id_subset
.
update
(
dict
((
str
(
idx
),
"
train/dev
"
)
for
idx
in
range
(
9
,
17
)))
dct_experiment_id_technique
=
{
"
1
"
:
'
None
'
,
"
2
"
:
'
Random
'
,
"
3
"
:
'
OMP
'
,
"
4
"
:
'
OMP Distillation
'
,
"
5
"
:
'
Kmeans
'
,
"
6
"
:
'
Zhang Similarities
'
,
"
7
"
:
'
Zhang Predictions
'
,
"
8
"
:
'
Ensemble
'
,
"
9
"
:
'
None
'
,
"
10
"
:
'
Random
'
,
"
11
"
:
'
OMP
'
,
"
12
"
:
'
OMP Distillation
'
,
"
13
"
:
'
Kmeans
'
,
"
14
"
:
'
Zhang Similarities
'
,
"
15
"
:
'
Zhang Predictions
'
,
"
16
"
:
'
Ensemble
'
}
dct_dataset_fancy
=
{
"
boston
"
:
"
Boston
"
,
"
breast_cancer
"
:
"
Breast Cancer
"
,
"
california_housing
"
:
"
California Housing
"
,
"
diabetes
"
:
"
Diabetes
"
,
"
diamonds
"
:
"
Diamonds
"
,
"
digits
"
:
"
Digits
"
,
"
iris
"
:
"
Iris
"
,
"
kin8nm
"
:
"
Kin8nm
"
,
"
kr-vs-kp
"
:
"
KR-VS-KP
"
,
"
olivetti_faces
"
:
"
Olivetti Faces
"
,
"
spambase
"
:
"
Spambase
"
,
"
steel-plates
"
:
"
Steel Plates
"
,
"
wine
"
:
"
Wine
"
,
"
gamma
"
:
"
Gamma
"
,
"
lfw_pairs
"
:
"
LFW Pairs
"
}
skip_attributes
=
[
"
datetime
"
,
"
model_weights
"
]
if
__name__
==
"
__main__
"
:
load_dotenv
(
find_dotenv
(
'
.env
'
))
dir_name
=
"
results/bolsonaro_models_25-03-20
"
dir_path
=
Path
(
os
.
environ
[
"
project_dir
"
])
/
dir_name
output_dir_file
=
dir_path
/
"
results.csv
"
dct_results
=
defaultdict
(
lambda
:
[])
for
root
,
dirs
,
files
in
os
.
walk
(
dir_path
,
topdown
=
False
):
for
file_str
in
files
:
path_dir
=
Path
(
root
)
path_file
=
path_dir
/
file_str
obj_results
=
pickle
.
load
(
open
(
path_file
,
'
rb
'
))
path_dir_split
=
str
(
path_dir
).
split
(
"
/
"
)
bool_wo_weights
=
"
no_weights
"
in
str
(
path_file
)
if
bool_wo_weights
:
forest_size
=
int
(
path_dir_split
[
-
1
].
split
(
"
_
"
)[
0
])
else
:
forest_size
=
int
(
path_dir_split
[
-
1
])
seed
=
int
(
path_dir_split
[
-
3
])
id_xp
=
str
(
path_dir_split
[
-
5
])
dataset
=
str
(
path_dir_split
[
-
6
])
dct_results
[
"
forest_size
"
].
append
(
forest_size
)
dct_results
[
"
seed
"
].
append
(
seed
)
dct_results
[
"
dataset
"
].
append
(
dct_dataset_fancy
[
dataset
])
dct_results
[
"
subset
"
].
append
(
dct_experiment_id_subset
[
id_xp
])
dct_results
[
"
strategy
"
].
append
(
dct_experiment_id_technique
[
id_xp
])
dct_results
[
"
wo_weights
"
].
append
(
bool_wo_weights
)
for
key_result
,
val_result
in
obj_results
.
items
():
if
key_result
in
skip_attributes
:
continue
if
val_result
==
""
:
val_result
=
None
dct_results
[
key_result
].
append
(
val_result
)
print
(
path_file
)
final_df
=
pd
.
DataFrame
.
from_dict
(
dct_results
)
final_df
.
to_csv
(
output_dir_file
)
print
(
final_df
)
Loading