Skip to content
Snippets Groups Projects

WIP: Resolve "coherence des arbres de predictions"

Open Charly Lamothe requested to merge 20-coherence-des-arbres-de-predictions into master
4 files
+ 30
29
Compare changes
  • Side-by-side
  • Inline
Files
4
@@ -19,7 +19,7 @@ class KMeansForestRegressor(BaseEstimator, metaclass=ABCMeta):
def __init__(self, models_parameters, score_metric=mean_squared_error):
self._models_parameters = models_parameters
self._estimator = RandomForestRegressor(**self._models_parameters.hyperparameters,
random_state=self._models_parameters.seed, n_jobs=2)
random_state=self._models_parameters.seed, n_jobs=1)
self._extracted_forest_size = self._models_parameters.extracted_forest_size
self._score_metric = score_metric
self._selected_trees = list()
@@ -46,7 +46,7 @@ class KMeansForestRegressor(BaseEstimator, metaclass=ABCMeta):
# For each cluster select the best tree on the validation set
extracted_forest_sizes = list(range(self._extracted_forest_size))
with tqdm_joblib(tqdm(total=self._extracted_forest_size, disable=True)) as prune_forest_job_pb:
pruned_forest = Parallel(n_jobs=2)(delayed(self._prune_forest_job)(prune_forest_job_pb,
pruned_forest = Parallel(n_jobs=1)(delayed(self._prune_forest_job)(prune_forest_job_pb,
extracted_forest_sizes[i], labels, X_val, y_val, self._score_metric)
for i in range(self._extracted_forest_size))
@@ -56,7 +56,7 @@ class KMeansForestRegressor(BaseEstimator, metaclass=ABCMeta):
def _prune_forest_job(self, prune_forest_job_pb, c, labels, X_val, y_val, score_metric):
index = np.where(labels == c)[0]
with tqdm_joblib(tqdm(total=len(index), disable=True)) as cluster_job_pb:
cluster = Parallel(n_jobs=2)(delayed(self._cluster_job)(cluster_job_pb, index[i], X_val,
cluster = Parallel(n_jobs=1)(delayed(self._cluster_job)(cluster_job_pb, index[i], X_val,
y_val, score_metric) for i in range(len(index)))
best_tree_index = np.argmax(cluster)
prune_forest_job_pb.update()
Loading