Skip to content
Snippets Groups Projects
Commit fdc3a1d2 authored by leo.bouscarrat's avatar leo.bouscarrat
Browse files

Merge branch '17-adding-new-datasets' of...

Merge branch '17-adding-new-datasets' of https://gitlab.lis-lab.fr/luc.giffon/bolsonaro into 17-adding-new-datasets
parents 858042ae 1b84a5c6
No related branches found
No related tags found
1 merge request!15Resolve "Adding new datasets"
This commit is part of merge request !15. Comments created here will be created in the context of that merge request.
Showing
with 357 additions and 11 deletions
{
"scorer": "neg_mean_squared_error",
"best_score_train": -13.33228274304088,
"best_score_test": -13.650326577972058,
"best_parameters": {
"max_features": "auto",
"min_samples_leaf": 1,
"max_depth": 20,
"n_estimators": 1000
},
"random_seed": [
1812,
1844,
1376,
383,
310,
1620,
54,
1502,
324,
1536,
1202,
1069,
645,
1706,
423
]
}
\ No newline at end of file
{
"scorer": "accuracy",
"best_score_train": 0.9562271062271059,
"best_score_test": 0.9514619883040936,
"best_parameters": {
"max_depth": 20,
"min_samples_leaf": 1,
"n_estimators": 1000,
"max_features": "log2"
},
"random_seed": [
1505,
5,
484,
284,
289,
1014,
1752,
497,
1350,
781,
408,
256,
1494,
1940,
842
]
}
\ No newline at end of file
{
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "california_housing",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.1,
"models_dir": "./models",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3
],
"subsets_used": "train,dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": false,
"save_experiment_configuration": [
"1",
"none_with_params"
],
"job_number": -1,
"extraction_strategy": "none",
"extracted_forest_size": [
16,
33,
50,
66,
83
],
"experiment_id": 26
}
\ No newline at end of file
{
"scorer": "neg_mean_squared_error",
"best_score_train": -0.2535049905518054,
"best_score_test": -0.24128661227361273,
"best_parameters": {
"max_features": "log2",
"min_samples_leaf": 1,
"n_estimators": 1000,
"max_depth": 18
},
"random_seed": [
1012,
529,
42
]
}
\ No newline at end of file
{
"scorer": "neg_mean_squared_error",
"best_score_train": -3565.203897624773,
"best_score_test": -3305.635542701523,
"best_parameters": {
"max_features": "auto",
"min_samples_leaf": 1,
"max_depth": 15,
"n_estimators": 108
},
"random_seed": [
661,
1004,
469,
1399,
32,
992,
312,
895,
170,
913,
347,
787,
1596,
752,
1093
]
}
\ No newline at end of file
{
"scorer": "neg_mean_squared_error",
"best_score_train": -627872.5455188936,
"best_score_test": -551230.808602097,
"best_parameters": {
"max_features": "auto",
"min_samples_leaf": 1,
"max_depth": 12,
"n_estimators": 429
},
"random_seed": [
83,
1000,
1262,
1117,
1899,
1378,
1904,
1661,
57,
1143,
1350,
871,
1030,
1585,
745
]
}
\ No newline at end of file
{
"scorer": "accuracy",
"best_score_train": 0.9667536988685814,
"best_score_test": 0.9738888888888889,
"best_parameters": {
"max_features": "sqrt",
"min_samples_leaf": 1,
"n_estimators": 1000,
"max_depth": 20
},
"random_seed": [
1,
103,
519,
213,
953
]
}
\ No newline at end of file
......@@ -7,17 +7,13 @@
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.05,
"extracted_forest_size_stop": 0.4,
"models_dir": "models/iris/stage1",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
1
],
"subsets_used": "train,dev",
"normalize_weights": false,
......@@ -30,10 +26,10 @@
"job_number": -1,
"extraction_strategy": "omp",
"extracted_forest_size": [
8,
17,
25,
33,
42
7,
13,
20,
27,
33
]
}
\ No newline at end of file
{
"scorer": "accuracy",
"best_score_train": 0.9541666666666668,
"best_score_test": 0.9155555555555556,
"best_parameters": {
"max_features": "sqrt",
"min_samples_leaf": 1,
"max_depth": 1,
"n_estimators": 1000
},
"random_seed": [
771,
577,
1262,
261,
1942,
121,
1710,
633,
1852,
821,
423,
574,
1452,
68,
624
]
}
\ No newline at end of file
{
"scorer": "accuracy",
"best_score_train": 0.6231060606060606,
"best_score_test": 0.6174242424242423,
"best_parameters": {
"min_samples_leaf": 1,
"n_estimators": 1000,
"max_depth": 16,
"max_features": "auto"
},
"random_seed": [
226,
674,
1639
]
}
\ No newline at end of file
{
"scorer": "neg_mean_squared_error",
"best_score_train": -223.81438159498393,
"best_score_test": -262.4415311793658,
"best_parameters": {
"max_depth": 1,
"min_samples_leaf": 1,
"max_features": "sqrt",
"n_estimators": 1000
},
"random_seed": [
1109,
509,
686,
1657,
922,
502,
1414,
1259,
1256,
1923,
1813,
1854,
136,
1129,
777
]
}
\ No newline at end of file
{
"scorer": "accuracy",
"best_score_train": 0.8890625,
"best_score_test": 0.89,
"best_parameters": {
"max_features": "log2",
"min_samples_leaf": 1,
"n_estimators": 1000,
"max_depth": 18
},
"random_seed": [
899,
249,
1367,
942,
846,
1576,
285,
839,
1974,
1216,
540,
1292,
1642,
712,
1511
]
}
\ No newline at end of file
{
"experiment_id": 3,
"experiment_configuration": null,
"experiment_configuration_path": "experiments",
"dataset_name": "steel-plates",
"normalize_D": false,
"dataset_normalizer": "standard",
"forest_size": null,
"extracted_forest_size_samples": 5,
"extracted_forest_size_stop": 0.4,
"models_dir": "models/steel/stage1",
"dev_size": 0.2,
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
"verbose": false,
"skip_best_hyperparams": false,
"save_experiment_configuration": [
"1",
"omp_with_params"
],
"job_number": -1,
"extraction_strategy": "omp",
"extracted_forest_size": [
7,
13,
20,
27,
33
]
}
\ No newline at end of file
{
"scorer": "accuracy",
"best_score_train": 0.9846607669616517,
"best_score_test": 0.9796296296296295,
"best_parameters": {
"max_depth": 20,
"min_samples_leaf": 1,
"n_estimators": 1000,
"max_features": "log2"
},
"random_seed": [
1431,
826,
1913,
168,
871,
1691,
1482,
1273,
255,
805,
1671,
448,
1217,
1213,
1160
]
}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment