Skip to content
Snippets Groups Projects
Commit e35b35bf authored by Luc Giffon's avatar Luc Giffon
Browse files

code figures (these luc)

parent 17fa2b1f
No related branches found
No related tags found
1 merge request!24Resolve "non negative omp"
...@@ -15,7 +15,7 @@ lst_task_train_dev = ["coherence", "correlation"] ...@@ -15,7 +15,7 @@ lst_task_train_dev = ["coherence", "correlation"]
tasks = [ tasks = [
# "train_score", # "train_score",
# "dev_score", "dev_score",
"test_score", "test_score",
# "coherence", # "coherence",
# "correlation", # "correlation",
...@@ -109,8 +109,8 @@ def add_trace_from_df(df, fig, task, strat, stop_on_flat=False): ...@@ -109,8 +109,8 @@ def add_trace_from_df(df, fig, task, strat, stop_on_flat=False):
global GLOBAL_TRACE_TO_ADD_LAST global GLOBAL_TRACE_TO_ADD_LAST
df.sort_values(by="forest_size", inplace=True) df.sort_values(by="forest_size", inplace=True)
df_groupby_forest_size = df.groupby(['forest_size']) df_groupby_forest_size = df.groupby(['pruning_percent'])
forest_sizes = list(df_groupby_forest_size["forest_size"].mean().values) forest_sizes = list(df_groupby_forest_size["pruning_percent"].mean().values)
mean_value = df_groupby_forest_size[task].mean().values mean_value = df_groupby_forest_size[task].mean().values
std_value = df_groupby_forest_size[task].std().values std_value = df_groupby_forest_size[task].std().values
...@@ -132,7 +132,8 @@ def add_trace_from_df(df, fig, task, strat, stop_on_flat=False): ...@@ -132,7 +132,8 @@ def add_trace_from_df(df, fig, task, strat, stop_on_flat=False):
width=2 width=2
) )
), ),
showlegend=False name="Final NN-OMP",
showlegend=True
) )
forest_sizes = forest_sizes[:index_flat] forest_sizes = forest_sizes[:index_flat]
...@@ -169,7 +170,21 @@ dct_metric_figure = { ...@@ -169,7 +170,21 @@ dct_metric_figure = {
"mean_squared_error": go.Figure() "mean_squared_error": go.Figure()
} }
def base_figures(): dct_gamma_by_dataset = {
"Boston": 5,
"Breast Cancer": 5,
"California Housing": 5,
"Diabetes": 5,
"Diamonds": 5,
"Kin8nm": 5,
"KR-VS-KP": 5,
"Spambase": 5,
"Steel Plates": 5,
"Gamma": 5,
"LFW Pairs": 5,
}
def base_figures(skip_NN=False):
for task in tasks: for task in tasks:
for data_name in datasets: for data_name in datasets:
...@@ -183,40 +198,40 @@ def base_figures(): ...@@ -183,40 +198,40 @@ def base_figures():
# all techniques # # all techniques #
################## ##################
for strat in strategies: for strat in strategies:
if strat in lst_skip_strategy: if strat in lst_skip_strategy or (skip_NN and "NN-OMP" in strat):
continue continue
if task == "negative-percentage-test-score": # if task == "negative-percentage-test-score":
if strat == "OMP": # if strat == "OMP":
df_strat = df_data[df_data["strategy"] == strat] # df_strat = df_data[df_data["strategy"] == strat]
df_strat = df_strat[df_strat["subset"] == "train+dev/train+dev"] # df_strat = df_strat[df_strat["subset"] == "train+dev/train+dev"]
df_strat_wo_weights = df_strat[df_strat["wo_weights"] == False] # df_strat_wo_weights = df_strat[df_strat["wo_weights"] == False]
#
df_groupby_forest_size = df_strat_wo_weights.groupby(['forest_size']) # df_groupby_forest_size = df_strat_wo_weights.groupby(['forest_size'])
#
#
forest_sizes = df_groupby_forest_size["forest_size"].mean().values # forest_sizes = df_groupby_forest_size["forest_size"].mean().values
x_values = df_groupby_forest_size["negative-percentage"].mean().values # x_values = df_groupby_forest_size["negative-percentage"].mean().values
y_values = df_groupby_forest_size["test_score"].mean().values # y_values = df_groupby_forest_size["test_score"].mean().values
# print(df_strat) # # print(df_strat)
fig.add_trace(go.Scatter(x=x_values, y=y_values, # fig.add_trace(go.Scatter(x=x_values, y=y_values,
mode='markers', # mode='markers',
name=strat, # name=strat,
# # color=forest_sizes,
# marker=dict(
# # size=16,
# # cmax=39,
# # cmin=0,
# color=forest_sizes, # color=forest_sizes,
marker=dict( # colorbar=dict(
# size=16, # title="Forest Size"
# cmax=39, # ),
# cmin=0, # # colorscale="Viridis"
color=forest_sizes, # ),
colorbar=dict( # # marker=dict(color="rgb{}".format(dct_color_by_strategy[strat]))
title="Forest Size" # ))
), #
# colorscale="Viridis" # continue
),
# marker=dict(color="rgb{}".format(dct_color_by_strategy[strat]))
))
continue
df_strat = df_data[df_data["strategy"] == strat] df_strat = df_data[df_data["strategy"] == strat]
...@@ -252,8 +267,9 @@ def base_figures(): ...@@ -252,8 +267,9 @@ def base_figures():
title = "{} {}".format(task, data_name) title = "{} {}".format(task, data_name)
yaxis_title = "% negative weights" if task == "negative-percentage" else dct_score_metric_fancy[score_metric_name] yaxis_title = "% negative weights" if task == "negative-percentage" else dct_score_metric_fancy[score_metric_name]
xaxis_title = "% negative weights" if task == "negative-percentage-test-score" else "# Selected Trees" xaxis_title = "% negative weights" if task == "negative-percentage-test-score" else "% Selected Trees"
if not skip_nn:
fig.add_trace(GLOBAL_TRACE_TO_ADD_LAST) fig.add_trace(GLOBAL_TRACE_TO_ADD_LAST)
fig.update_layout(barmode='group', fig.update_layout(barmode='group',
# title=title, # title=title,
...@@ -264,7 +280,7 @@ def base_figures(): ...@@ -264,7 +280,7 @@ def base_figures():
size=24, size=24,
color="black" color="black"
), ),
# showlegend = False, showlegend = False,
margin = dict( margin = dict(
l=1, l=1,
r=1, r=1,
...@@ -285,6 +301,9 @@ def base_figures(): ...@@ -285,6 +301,9 @@ def base_figures():
) )
) )
# fig.show() # fig.show()
if skip_NN:
str_no_nn = " no nn"
title += str_no_nn
sanitize = lambda x: x.replace(" ", "_").replace("/", "_").replace("+", "_") sanitize = lambda x: x.replace(" ", "_").replace("/", "_").replace("+", "_")
filename = sanitize(title) filename = sanitize(title)
output_dir = out_dir / sanitize(task) output_dir = out_dir / sanitize(task)
...@@ -375,14 +394,14 @@ def global_figure(): ...@@ -375,14 +394,14 @@ def global_figure():
# fig.show() # fig.show()
def weights_wrt_size(): def weights_wrt_size():
lst_skip_data_weight_effect = ["Gamma", "KR-VS-KP", "Steel Plates"] # lst_skip_data_weight_effect = ["Gamma", "KR-VS-KP", "Steel Plates"]
lst_skip_data_weight_effect = ["Gamma"]
fig = go.Figure() fig = go.Figure()
for data_name in datasets: for data_name in datasets:
# if data_name in lst_skip_data_weight_effect: if data_name in lst_skip_data_weight_effect:
# continue continue
df_data = df_results[df_results["dataset"] == data_name] df_data = df_results[df_results["dataset"] == data_name]
score_metric_name = df_data["score_metric"].values[0] score_metric_name = df_data["score_metric"].values[0]
...@@ -401,7 +420,7 @@ def weights_wrt_size(): ...@@ -401,7 +420,7 @@ def weights_wrt_size():
y_values = df_groupby_forest_size["negative-percentage"].mean().values y_values = df_groupby_forest_size["negative-percentage"].mean().values
y_values = (y_values - np.min(y_values)) / (np.max(y_values) - np.min(y_values)) y_values = (y_values - np.min(y_values)) / (np.max(y_values) - np.min(y_values))
x_values = np.around(df_groupby_forest_size["pruning_percent"].mean().values, decimals=1) x_values = df_groupby_forest_size["pruning_percent"].mean().values
# x_values = (x_values - np.min(x_values)) / (np.max(x_values) - np.min(x_values)) # x_values = (x_values - np.min(x_values)) / (np.max(x_values) - np.min(x_values))
# if score_metric_name == "mean_squared_error": # if score_metric_name == "mean_squared_error":
...@@ -410,8 +429,8 @@ def weights_wrt_size(): ...@@ -410,8 +429,8 @@ def weights_wrt_size():
lin_reg = svm.SVR(gamma=10) lin_reg = svm.SVR(gamma=10)
lin_reg.fit(x_values[:, np.newaxis], y_values) lin_reg.fit(x_values[:, np.newaxis], y_values)
xx = np.linspace(0, 1) # xx = np.linspace(0, 1)
yy = lin_reg.predict(xx[:, np.newaxis]) yy = lin_reg.predict(x_values[:, np.newaxis])
# print(df_strat) # print(df_strat)
fig.add_trace(go.Scatter(x=x_values, y=y_values, fig.add_trace(go.Scatter(x=x_values, y=y_values,
...@@ -430,7 +449,7 @@ def weights_wrt_size(): ...@@ -430,7 +449,7 @@ def weights_wrt_size():
), ),
# marker=dict(color="rgb{}".format(dct_color_by_strategy[strat])) # marker=dict(color="rgb{}".format(dct_color_by_strategy[strat]))
)) ))
fig.add_trace(go.Scatter(x=xx, y=yy, fig.add_trace(go.Scatter(x=x_values, y=yy,
mode='lines', mode='lines',
name=strat, name=strat,
# color=forest_sizes, # color=forest_sizes,
...@@ -452,8 +471,8 @@ def weights_wrt_size(): ...@@ -452,8 +471,8 @@ def weights_wrt_size():
title = "{}".format("weight wrt size") title = "{}".format("weight wrt size")
fig.update_layout(barmode='group', fig.update_layout(barmode='group',
title=title, # title=title,
xaxis_title="Pruning percentage", xaxis_title="% Selected Trees",
yaxis_title="Standardized % negative weights", yaxis_title="Standardized % negative weights",
font=dict( font=dict(
# family="Courier New, monospace", # family="Courier New, monospace",
...@@ -464,8 +483,8 @@ def weights_wrt_size(): ...@@ -464,8 +483,8 @@ def weights_wrt_size():
margin=dict( margin=dict(
l=1, l=1,
r=1, r=1,
b=1, b=3,
t=1, t=10,
# pad=4 # pad=4
), ),
legend=dict( legend=dict(
...@@ -488,12 +507,13 @@ def weights_wrt_size(): ...@@ -488,12 +507,13 @@ def weights_wrt_size():
fig.write_image(str((output_dir / filename).absolute()) + ".png") fig.write_image(str((output_dir / filename).absolute()) + ".png")
def effect_of_weights_figure(): def effect_of_weights_figure():
lst_skip_data_weight_effect = ["Gamma", "KR-VS-KP", "Steel Plates"] lst_skip_data_weight_effect = ["Gamma"]
# lst_skip_data_weight_effect = ["Gamma", "KR-VS-KP", "Steel Plates"]
fig = go.Figure() fig = go.Figure()
for data_name in datasets: for data_name in datasets:
#
# if data_name in lst_skip_data_weight_effect: # if data_name in lst_skip_data_weight_effect:
# continue # continue
df_data = df_results[df_results["dataset"] == data_name] df_data = df_results[df_results["dataset"] == data_name]
...@@ -506,29 +526,31 @@ def effect_of_weights_figure(): ...@@ -506,29 +526,31 @@ def effect_of_weights_figure():
df_strat = df_data[df_data["strategy"] == strat] df_strat = df_data[df_data["strategy"] == strat]
df_strat = df_strat[df_strat["subset"] == "train+dev/train+dev"] df_strat = df_strat[df_strat["subset"] == "train+dev/train+dev"]
df_strat_wo_weights = df_strat[df_strat["wo_weights"] == False] df_strat_wo_weights = df_strat[df_strat["wo_weights"] == False]
df_strat_wo_weights.sort_values(by="pruning_percent", inplace=True) df_strat_wo_weights.sort_values(by="pruning_percent", inplace=True)
df_groupby_forest_size = df_strat_wo_weights.groupby(['forest_size']) df_groupby_forest_size = df_strat_wo_weights.groupby(['forest_size'])
x_values = df_groupby_forest_size["negative-percentage"].mean().values x_values = df_groupby_forest_size["negative-percentage"].mean().values
x_values = (x_values - np.min(x_values)) / (np.max(x_values) - np.min(x_values))
y_values = df_groupby_forest_size["test_score"].mean().values y_values = df_groupby_forest_size["test_score"].mean().values
if score_metric_name == "mean_squared_error": if score_metric_name == "mean_squared_error":
y_values = 1/y_values y_values = 1/y_values
x_values = x_values[3:]
y_values = y_values[3:]
x_values = (x_values - np.min(x_values)) / (np.max(x_values) - np.min(x_values))
y_values = (y_values - np.min(y_values)) / (np.max(y_values) - np.min(y_values)) y_values = (y_values - np.min(y_values)) / (np.max(y_values) - np.min(y_values))
bins = np.histogram(x_values)[1] # bins = np.histogram(x_values)[1]
indices_x_values = np.digitize(x_values, bins)-1 # indices_x_values = np.digitize(x_values, bins)-1
mean_val = np.empty(len(bins)-1) # mean_val = np.empty(len(bins)-1)
for idx_group in range(len(bins) - 1): # for idx_group in range(len(bins) - 1):
mean_val[idx_group] = np.mean(y_values[indices_x_values == idx_group]) # mean_val[idx_group] = np.mean(y_values[indices_x_values == idx_group])
# lin_reg = LinearRegression() # lin_reg = LinearRegression()
lin_reg = svm.SVR(gamma=5) # lin_reg = svm.SVR(gamma=dct_gamma_by_dataset[data_name])
lin_reg = svm.SVR(gamma=1.)
lin_reg.fit(x_values[:, np.newaxis], y_values) lin_reg.fit(x_values[:, np.newaxis], y_values)
xx = np.linspace(0, 1) xx = np.linspace(0, 1)
...@@ -540,6 +562,7 @@ def effect_of_weights_figure(): ...@@ -540,6 +562,7 @@ def effect_of_weights_figure():
fig.add_trace(go.Scatter(x=x_values, y=y_values, fig.add_trace(go.Scatter(x=x_values, y=y_values,
mode='markers', mode='markers',
name=strat, name=strat,
showlegend=False,
# color=forest_sizes, # color=forest_sizes,
marker=dict( marker=dict(
# size=16, # size=16,
...@@ -576,15 +599,15 @@ def effect_of_weights_figure(): ...@@ -576,15 +599,15 @@ def effect_of_weights_figure():
title = "{}".format("negative weights effect") title = "{}".format("negative weights effect")
fig.update_layout(barmode='group', fig.update_layout(barmode='group',
title=title, # title=title,
xaxis_title="Standardized % negative weights", xaxis_title="Standardized % Negative Weights",
yaxis_title="Normalized Performance", yaxis_title="Standardized Performance",
font=dict( font=dict(
# family="Courier New, monospace", # family="Courier New, monospace",
size=24, size=24,
color="black" color="black"
), ),
showlegend = False, # showlegend = False,
margin=dict( margin=dict(
l=1, l=1,
r=1, r=1,
...@@ -626,7 +649,8 @@ if __name__ == "__main__": ...@@ -626,7 +649,8 @@ if __name__ == "__main__":
strategies = set(df_results["strategy"].values) strategies = set(df_results["strategy"].values)
subsets = set(df_results["subset"].values) subsets = set(df_results["subset"].values)
# base_figures() for skip_nn in [True, False]:
effect_of_weights_figure() base_figures(skip_nn)
weights_wrt_size() # effect_of_weights_figure()
# weights_wrt_size()
# global_figure() # global_figure()
...@@ -33,18 +33,32 @@ dct_score_metric_best_fct = { ...@@ -33,18 +33,32 @@ dct_score_metric_best_fct = {
"mean_squared_error": np.argmin "mean_squared_error": np.argmin
} }
# dct_data_short = {
# "Spambase": "Spambase",
# "Diamonds": "Diamonds",
# "Diabetes": "Diabetes",
# "Steel Plates": "Steel P.",
# "KR-VS-KP": "KR-VS-KP",
# "Breast Cancer": "Breast C.",
# "Kin8nm": "Kin8nm",
# "LFW Pairs": "LFW P.",
# "Gamma": "Gamma",
# "California Housing": "California H.",
# "Boston": "Boston",
# }
dct_data_short = { dct_data_short = {
"Spambase": "Spambase", "Spambase": "Sp. B.",
"Diamonds": "Diamonds", "Diamonds": "Diam.",
"Diabetes": "Diabetes", "Diabetes": "Diab.",
"Steel Plates": "Steel P.", "Steel Plates": "St. P.",
"KR-VS-KP": "KR-VS-KP", "KR-VS-KP": "KR-KP",
"Breast Cancer": "Breast C.", "Breast Cancer": "B. C.",
"Kin8nm": "Kin8nm", "Kin8nm": "Kin.",
"LFW Pairs": "LFW P.", "LFW Pairs": "LFW P.",
"Gamma": "Gamma", "Gamma": "Gam.",
"California Housing": "California H.", "California Housing": "C. H.",
"Boston": "Boston", "Boston": "Bos.",
} }
dct_data_best = { dct_data_best = {
...@@ -101,7 +115,7 @@ def get_max_from_df(df, best_fct): ...@@ -101,7 +115,7 @@ def get_max_from_df(df, best_fct):
if __name__ == "__main__": if __name__ == "__main__":
load_dotenv(find_dotenv('.env')) load_dotenv(find_dotenv('.env'))
dir_name = "bolsonaro_models_25-03-20" dir_name = "bolsonaro_models_29-03-20_v3_2"
dir_path = Path(os.environ["project_dir"]) / "results" / dir_name dir_path = Path(os.environ["project_dir"]) / "results" / dir_name
out_dir = Path(os.environ["project_dir"]) / "reports/figures" / dir_name out_dir = Path(os.environ["project_dir"]) / "reports/figures" / dir_name
...@@ -155,29 +169,19 @@ if __name__ == "__main__": ...@@ -155,29 +169,19 @@ if __name__ == "__main__":
if "OMP" in strat: if "OMP" in strat:
########################### ###########################
# traitement avec weights # # traitement without weights #
########################### ###########################
df_strat_wo_weights = df_strat[df_strat["wo_weights"] == False] df_strat_wo_weights = df_strat[df_strat["wo_weights"] == True]
if data_name == "Boston" and subset_name == "train+dev/train+dev":
df_strat_wo_weights = df_strat_wo_weights[df_strat_wo_weights["forest_size"] < 400]
dct_data_lst_tpl_results[data_name].append(get_max_from_df(df_strat_wo_weights, dct_score_metric_best_fct[score_metric_name]))
if strat not in lst_strats: lst_strats.append(strat)
if "OMP" in strat and subset_name == "train/dev": strat_woweights = "{} w/o weights".format(strat)
continue dct_data_lst_tpl_results[data_name].append(get_max_from_df(df_strat_wo_weights, dct_score_metric_best_fct[score_metric_name]))
elif "Random" not in strat and subset_name == "train/dev": if strat_woweights not in lst_strats: lst_strats.append(strat_woweights)
continue
################################# #################################
# traitement general wo_weights # # traitement general wo_weights #
################################# #################################
if "Random" in strat:
df_strat_wo_weights = df_strat[df_strat["wo_weights"] == False] df_strat_wo_weights = df_strat[df_strat["wo_weights"] == False]
else:
df_strat_wo_weights = df_strat[df_strat["wo_weights"] == True]
if "OMP" in strat:
strat = "{} w/o weights".format(strat)
dct_data_lst_tpl_results[data_name].append(get_max_from_df(df_strat_wo_weights, dct_score_metric_best_fct[score_metric_name])) dct_data_lst_tpl_results[data_name].append(get_max_from_df(df_strat_wo_weights, dct_score_metric_best_fct[score_metric_name]))
if strat not in lst_strats: lst_strats.append(strat) if strat not in lst_strats: lst_strats.append(strat)
...@@ -219,7 +223,8 @@ if __name__ == "__main__": ...@@ -219,7 +223,8 @@ if __name__ == "__main__":
lst_tpl_results = dct_data_lst_tpl_results[data_name] lst_tpl_results = dct_data_lst_tpl_results[data_name]
data_name_short = dct_data_short[data_name] data_name_short = dct_data_short[data_name]
s_data_tmp = "{}".format(data_name_short) s_data_tmp = "{}".format(data_name_short)
s_data_tmp += "({})".format(dct_data_metric[data_name]) # add metric in parenthesis
# s_data_tmp += "({})".format(dct_data_metric[data_name])
# s_data_tmp = "\\texttt{{ {} }}".format(data_name_short) # s_data_tmp = "\\texttt{{ {} }}".format(data_name_short)
# s_data_tmp = "\\multicolumn{{2}}{{c}}{{ \\texttt{{ {} }} }}".format(data_name) # s_data_tmp = "\\multicolumn{{2}}{{c}}{{ \\texttt{{ {} }} }}".format(data_name)
s_data_tmp += " "*(nb_spaces - len(data_name_short)) s_data_tmp += " "*(nb_spaces - len(data_name_short))
...@@ -292,8 +297,8 @@ if __name__ == "__main__": ...@@ -292,8 +297,8 @@ if __name__ == "__main__":
print("\\midrule") print("\\midrule")
if idx_lin == 6: if idx_lin == 6:
print("\\midrule") print("\\midrule")
if lst_data_ordered[idx_lin-1] == "Diamonds": # if lst_data_ordered[idx_lin-1] == "Diamonds":
print("%", end="") # print("%", end="")
line_print = " ".join(list(lin)) line_print = " ".join(list(lin))
line_print = line_print.rstrip(" &") + "\\\\" line_print = line_print.rstrip(" &") + "\\\\"
print(line_print) print(line_print)
......
import copy
from dotenv import load_dotenv, find_dotenv
from pathlib import Path
import os
import pandas as pd
import numpy as np
from pprint import pprint
import plotly.graph_objects as go
import plotly.io as pio
from collections import defaultdict
lst_skip_strategy = ["None", "OMP Distillation", "OMP Distillation w/o weights"]
lst_skip_task = ["correlation", "coherence"]
# lst_skip_task = []
lst_skip_subset = ["train/dev"]
# lst_skip_subset = []
tasks = [
# "train_score",
# "dev_score",
"test_score",
# "coherence",
# "correlation"
]
dct_score_metric_fancy = {
"accuracy_score": "% Accuracy",
"mean_squared_error": "MSE"
}
dct_score_metric_best_fct = {
"accuracy_score": np.argmax,
"mean_squared_error": np.argmin
}
# dct_data_short = {
# "Spambase": "Spambase",
# "Diamonds": "Diamonds",
# "Diabetes": "Diabetes",
# "Steel Plates": "Steel P.",
# "KR-VS-KP": "KR-VS-KP",
# "Breast Cancer": "Breast C.",
# "Kin8nm": "Kin8nm",
# "LFW Pairs": "LFW P.",
# "Gamma": "Gamma",
# "California Housing": "California H.",
# "Boston": "Boston",
# }
dct_data_short = {
"Spambase": "Sp. B.",
"Diamonds": "Diam.",
"Diabetes": "Diab.",
"Steel Plates": "St. P.",
"KR-VS-KP": "KR-KP",
"Breast Cancer": "B. C.",
"Kin8nm": "Kin.",
"LFW Pairs": "LFW P.",
"Gamma": "Gam.",
"California Housing": "C. H.",
"Boston": "Bos.",
}
dct_data_best = {
"Spambase": np.max,
"Diamonds": np.min,
"Diabetes": np.min,
"Steel Plates": np.max,
"KR-VS-KP": np.max,
"Breast Cancer": np.max,
"Kin8nm": np.min,
"LFW Pairs": np.max,
"Gamma": np.max,
"California Housing": np.min,
"Boston": np.min,
}
dct_data_metric = {
"Spambase": "Acc.",
"Diamonds": "MSE",
"Diabetes": "MSE",
"Steel Plates": "Acc.",
"KR-VS-KP": "Acc.",
"Breast Cancer": "Acc.",
"Kin8nm": "MSE",
"LFW Pairs": "Acc.",
"Gamma": "Acc.",
"California Housing": "MSE",
"Boston": "MSE",
}
def get_max_from_df(df, best_fct):
nb_to_consider = 10
df.sort_values(by="forest_size", inplace=True)
df_groupby_forest_size = df.groupby(['forest_size'])
forest_sizes = list(df_groupby_forest_size["forest_size"].mean().values)[:nb_to_consider]
mean_value = df_groupby_forest_size[task].mean().values[:nb_to_consider]
std_value = df_groupby_forest_size[task].std().values[:nb_to_consider]
try:
argmax = best_fct(mean_value)
except:
print("no results", strat, data_name, task, subset_name)
return -1, -1, -1
max_mean = mean_value[argmax]
max_std = std_value[argmax]
max_forest_size = forest_sizes[argmax]
return max_forest_size, max_mean, max_std
if __name__ == "__main__":
load_dotenv(find_dotenv('.env'))
dir_name = "bolsonaro_models_29-03-20_v3_2"
dir_path = Path(os.environ["project_dir"]) / "results" / dir_name
out_dir = Path(os.environ["project_dir"]) / "reports/figures" / dir_name
input_dir_file = dir_path / "results.csv"
df_results = pd.read_csv(open(input_dir_file, 'rb'))
datasets = set(df_results["dataset"].values)
strategies = sorted(list(set(df_results["strategy"].values) - set(lst_skip_strategy)))
subsets = set(df_results["subset"].values)
r"""
\begin{table}[!h]
\centering
\begin{tabular}{l{}}
\toprule
\multicolumn{1}{c}{\textbf{Dataset}} & \textbf{Data dim.} $\datadim$ & \textbf{\# classes} & \textbf{Train size} $\nexamples$ & \textbf{Test size} $\nexamples'$ \\ \midrule
\texttt{MNIST}~\cite{lecun-mnisthandwrittendigit-2010} & 784 & 10 & 60 000 & 10 000 \\ %\hline
\texttt{Kddcup99}~\cite{Dua:2019} & 116 & 23 & 4 893 431 & 5 000 \\
\bottomrule
\end{tabular}
\caption{Main features of the datasets. Discrete, unordered attributes for dataset Kddcup99 have been encoded as one-hot attributes.}
\label{table:data}
\end{table}
"""
for task in tasks:
if task in lst_skip_task:
continue
dct_data_lst_tpl_results = defaultdict(lambda: [])
lst_strats = []
for data_name in datasets:
df_data = df_results[df_results["dataset"] == data_name]
score_metric_name = df_data["score_metric"].values[0]
for subset_name in subsets:
if subset_name in lst_skip_subset:
continue
df_subset = df_data[df_data["subset"] == subset_name]
##################
# all techniques #
##################
for strat in strategies:
if strat in lst_skip_strategy:
continue
df_strat = df_subset[df_subset["strategy"] == strat]
if "OMP" in strat:
###########################
# traitement without weights #
###########################
df_strat_wo_weights = df_strat[df_strat["wo_weights"] == True]
strat_woweights = "{} w/o weights".format(strat)
dct_data_lst_tpl_results[data_name].append(get_max_from_df(df_strat_wo_weights, dct_score_metric_best_fct[score_metric_name]))
if strat_woweights not in lst_strats: lst_strats.append(strat_woweights)
#################################
# traitement general wo_weights #
#################################
df_strat_wo_weights = df_strat[df_strat["wo_weights"] == False]
dct_data_lst_tpl_results[data_name].append(get_max_from_df(df_strat_wo_weights, dct_score_metric_best_fct[score_metric_name]))
if strat not in lst_strats: lst_strats.append(strat)
title = "{} {} {}".format(task, data_name, subset_name)
# fig.show()
sanitize = lambda x: x.replace(" ", "_").replace("/", "_").replace("+", "_")
filename = sanitize(title)
# output_dir = out_dir / sanitize(subset_name) / sanitize(task)
# output_dir.mkdir(parents=True, exist_ok=True)
# fig.write_image(str((output_dir / filename).absolute()) + ".png")
# pprint(dct_data_lst_tpl_results)
lst_data_ordered = [
"Diamonds",
"Diabetes",
"Kin8nm",
"California Housing",
"Boston",
"Spambase",
"Steel Plates",
"KR-VS-KP",
"Breast Cancer",
"LFW Pairs",
"Gamma"
]
arr_results_str = np.empty((len(lst_strats)+1, len(datasets) + 1 ), dtype="object")
nb_spaces = 25
dct_strat_str = defaultdict(lambda: [])
s_empty = "{}" + " "*(nb_spaces-2) + " & "
arr_results_str[0][0] = s_empty
# arr_results_str[0][1] = s_empty
for idx_data, data_name in enumerate(lst_data_ordered):
lst_tpl_results = dct_data_lst_tpl_results[data_name]
data_name_short = dct_data_short[data_name]
# s_data_tmp = "{}".format(data_name_short)
# add metric in parenthesis
# s_data_tmp += "({})".format(dct_data_metric[data_name])
# s_data_tmp = "\\texttt{{ {} }}".format(data_name_short)
s_data_tmp = "\\multicolumn{{2}}{{c}}{{ \\texttt{{ {} }} }}".format(data_name)
s_data_tmp += " "*(nb_spaces - len(s_data_tmp))
s_data_tmp += " & "
arr_results_str[0, idx_data + 1] = s_data_tmp
array_results = np.array(lst_tpl_results)
best_result_perf = dct_data_best[data_name](array_results[:, 1])
best_result_perf_indexes = np.argwhere(array_results[:, 1] == best_result_perf)
copye_array_results = copy.deepcopy(array_results)
if dct_data_best[data_name] is np.min:
copye_array_results[best_result_perf_indexes] = np.inf
else:
copye_array_results[best_result_perf_indexes] = -np.inf
best_result_perf_2 = dct_data_best[data_name](copye_array_results[:, 1])
best_result_perf_indexes_2 = np.argwhere(copye_array_results[:, 1] == best_result_perf_2)
best_result_prune = np.min(array_results[:, 0])
best_result_prune_indexes = np.argwhere(array_results[:, 0] == best_result_prune)
for idx_strat, tpl_results in enumerate(array_results):
str_strat = "\\texttt{{ {} }}".format(lst_strats[idx_strat])
# str_strat = "\\multicolumn{{2}}{{c}}{{ \\texttt{{ {} }} }}".format(lst_strats[idx_strat])
# str_strat = "\\multicolumn{{2}}{{c}}{{ \\thead{{ \\texttt{{ {} }} }} }}".format("}\\\\ \\texttt{".join(lst_strats[idx_strat].split(" ", 1)))
# str_strat = "\\multicolumn{{2}}{{c}}{{ \\thead{{ {} }} }} ".format("\\\\".join(lst_strats[idx_strat].split(" ", 1)))
str_strat += " " * (nb_spaces - len(str_strat)) + " & "
arr_results_str[idx_strat+1, 0] = str_strat
# str_header = " {} & #tree &".format(dct_data_metric[data_name])
# arr_results_str[idx_strat + 1, 1] = str_header
best_forest_size = tpl_results[0]
best_mean = tpl_results[1]
best_std = tpl_results[2]
if dct_data_metric[data_name] == "Acc.":
str_perf = "{:.2f}\\%".format(best_mean * 100)
else:
str_perf = "{:.3E}".format(best_mean)
str_prune = "{:d}".format(int(best_forest_size))
if idx_strat in best_result_perf_indexes:
# str_formating = "\\textbf{{ {} }}".format(str_result_loc)
str_formating = "\\textbf[{}]"
# str_formating = "\\textbf{{ {:.3E} }}(\\~{:.3E})".format(best_mean, best_std)
elif idx_strat in best_result_perf_indexes_2:
str_formating = "\\underline[{}]"
# str_formating = "\\underline{{ {:.3E} }}(\\~{:.3E})".format(best_mean, best_std)
else:
str_formating = "{}"
# str_formating = "{:.3E}(~{:.3E})".format(best_mean, best_std)
if idx_strat in best_result_prune_indexes:
str_formating = str_formating.format("\\textit[{}]")
# str_prune = " & \\textit{{ {:d} }}".format(int(best_forest_size))
# else:
# str_prune = " & {:d}".format(int(best_forest_size))
str_result = str_formating.format(str_perf) + " & " + str_formating.format(str_prune)
str_result += " "*(nb_spaces - len(str_result))
str_result = str_result.replace("[", "{").replace("]", "}")
arr_results_str[idx_strat+1, idx_data+1] = str_result + " & "
dct_strat_str[lst_strats[idx_strat]].append(str_result)
# arr_results_str = arr_results_str.T
arr_results_str_classif = arr_results_str[:, 6:]
arr_results_str_classif = np.hstack([arr_results_str[:, 0:1], arr_results_str_classif])
arr_results_str_reg = arr_results_str[:, :6]
for arr_results_str in [arr_results_str_classif, arr_results_str_reg]:
print(r"\toprule")
for idx_lin, lin in enumerate(arr_results_str):
if idx_lin == 1:
print("\\midrule")
# if idx_lin == 6:
# print("\\midrule")
# if lst_data_ordered[idx_lin-1] == "Diamonds":
# print("%", end="")
line_print = " ".join(list(lin))
line_print = line_print.rstrip(" &") + "\\\\"
print(line_print)
print(r"\bottomrule")
# s_data = s_data.rstrip(" &") + "\\\\"
# print(s_data)
# for strat, lst_str_results in dct_strat_str.items():
# str_strat = "\\texttt{{ {} }}".format(strat)
# str_strat += " "*(nb_spaces - len(str_strat))
# str_strat += " & " + " & ".join(lst_str_results)
# str_strat += "\\\\"
# print(str_strat)
# exit()
...@@ -60,7 +60,7 @@ dct_dataset_fancy = { ...@@ -60,7 +60,7 @@ dct_dataset_fancy = {
} }
dct_dataset_base_forest_size = { dct_dataset_base_forest_size = {
"boston": 1000, "boston": 100,
"breast_cancer": 1000, "breast_cancer": 1000,
"california_housing": 1000, "california_housing": 1000,
"diabetes": 108, "diabetes": 108,
...@@ -132,7 +132,7 @@ if __name__ == "__main__": ...@@ -132,7 +132,7 @@ if __name__ == "__main__":
dct_results["wo_weights"].append(bool_wo_weights) dct_results["wo_weights"].append(bool_wo_weights)
dct_results["base_forest_size"].append(dct_dataset_base_forest_size[dataset]) dct_results["base_forest_size"].append(dct_dataset_base_forest_size[dataset])
pruning_percent = forest_size / dct_dataset_base_forest_size[dataset] pruning_percent = forest_size / dct_dataset_base_forest_size[dataset]
dct_results["pruning_percent"].append(np.round(pruning_percent, decimals=1)) dct_results["pruning_percent"].append(np.round(pruning_percent, decimals=2))
dct_nb_val_scores = {} dct_nb_val_scores = {}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment