Skip to content
Snippets Groups Projects
Commit bd349760 authored by Luc Giffon's avatar Luc Giffon
Browse files

fix classification for similarity forest

parent 24cb371b
Branches
No related tags found
1 merge request!23Resolve "integration-sota"
import time
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
from sklearn.metrics import mean_squared_error
from sklearn.base import BaseEstimator
from abc import abstractmethod, ABCMeta
......@@ -19,10 +19,15 @@ class SimilarityForest(BaseEstimator, metaclass=ABCMeta):
def __init__(self, models_parameters):
self._models_parameters = models_parameters
self._estimator = RandomForestRegressor(**self._models_parameters.hyperparameters,
random_state=self._models_parameters.seed, n_jobs=-1)
self._extracted_forest_size = self._models_parameters.extracted_forest_size
self._selected_trees = list()
self._base_estimator = self.init_estimator(models_parameters)
@staticmethod
@abstractmethod
def init_estimator(model_parameters):
pass
@property
def models_parameters(self):
......@@ -32,32 +37,33 @@ class SimilarityForest(BaseEstimator, metaclass=ABCMeta):
def selected_trees(self):
return self._selected_trees
def _base_estimator_predictions(self, X):
base_predictions = np.array([tree.predict(X) for tree in self._base_estimator.estimators_]).T
return base_predictions
def _selected_tree_predictions(self, X):
base_predictions = np.array([tree.predict(X) for tree in self.selected_trees]).T
return base_predictions
def predict(self, X):
predictions = np.empty((len(self._selected_trees), X.shape[0]))
for idx_tree, tree in enumerate(self._selected_trees):
predictions[idx_tree, :] = tree.predict(X)
predictions = self._selected_tree_predictions(X).T
final_predictions = self._aggregate(predictions)
return final_predictions
def predict_base_estimator(self, X):
return self._estimator.predict(X)
return self._base_estimator.predict(X)
def fit(self, X_train, y_train, X_val, y_val):
self._estimator.fit(X_train, y_train)
self._base_estimator.fit(X_train, y_train)
param = self._models_parameters.extraction_strategy
# get score of base forest on val
tree_list = list(self._estimator.estimators_) # get score of base forest on val
tree_list = list(self._base_estimator.estimators_) # get score of base forest on val
trees_to_remove = list()
# get score of each single tree of forest on val
val_predictions = np.empty((len(tree_list), X_val.shape[0]))
with tqdm(tree_list) as tree_pred_bar:
tree_pred_bar.set_description('[Initial tree predictions]')
for idx_tree, tree in enumerate(tree_pred_bar):
val_predictions[idx_tree, :] = tree.predict(X_val)
tree_pred_bar.update(1)
val_predictions = self._base_estimator_predictions(X_val).T
# boolean mask of trees to take into account for next evaluation of trees importance
mask_trees_to_consider = np.ones(val_predictions.shape[0], dtype=bool)
......@@ -132,6 +138,12 @@ class SimilarityForest(BaseEstimator, metaclass=ABCMeta):
class SimilarityForestRegressor(SimilarityForest, metaclass=ABCMeta):
@staticmethod
def init_estimator(model_parameters):
return RandomForestRegressor(**model_parameters.hyperparameters,
random_state=model_parameters.seed, n_jobs=2)
def _aggregate(self, predictions):
return aggregation_regression(predictions)
......@@ -143,6 +155,12 @@ class SimilarityForestRegressor(SimilarityForest, metaclass=ABCMeta):
class SimilarityForestClassifier(SimilarityForest, metaclass=ABCMeta):
@staticmethod
def init_estimator(model_parameters):
return RandomForestClassifier(**model_parameters.hyperparameters,
random_state=model_parameters.seed, n_jobs=2)
def _aggregate(self, predictions):
return aggregation_classification(predictions)
......@@ -152,3 +170,12 @@ class SimilarityForestClassifier(SimilarityForest, metaclass=ABCMeta):
def _activation(self, predictions):
return np.sign(predictions)
def _selected_tree_predictions(self, X):
predictions_0_1 = super()._selected_tree_predictions(X)
predictions = (predictions_0_1 - 0.5) * 2
return predictions
def _base_estimator_predictions(self, X):
predictions_0_1 = super()._base_estimator_predictions(X)
predictions = (predictions_0_1 - 0.5) * 2
return predictions
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment