Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
bolsonaro
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Luc Giffon
bolsonaro
Commits
9d68b04f
Commit
9d68b04f
authored
5 years ago
by
Charly Lamothe
Browse files
Options
Downloads
Patches
Plain Diff
Parallelize the kmeans forest regressor
parent
59e65276
No related branches found
No related tags found
1 merge request
!12
Resolve "integration-sota"
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
code/bolsonaro/models/kmeans_forest_regressor.py
+30
-3
30 additions, 3 deletions
code/bolsonaro/models/kmeans_forest_regressor.py
with
30 additions
and
3 deletions
code/bolsonaro/models/kmeans_forest_regressor.py
+
30
−
3
View file @
9d68b04f
from
bolsonaro.utils
import
tqdm_joblib
from
sklearn.ensemble
import
RandomForestRegressor
from
sklearn.metrics
import
mean_squared_error
from
sklearn.base
import
BaseEstimator
...
...
@@ -5,6 +7,8 @@ from sklearn.cluster import KMeans
from
abc
import
abstractmethod
,
ABCMeta
import
numpy
as
np
from
scipy.stats
import
mode
from
joblib
import
Parallel
,
delayed
from
tqdm
import
tqdm
class
KMeansForestRegressor
(
BaseEstimator
,
metaclass
=
ABCMeta
):
...
...
@@ -15,7 +19,7 @@ class KMeansForestRegressor(BaseEstimator, metaclass=ABCMeta):
def
__init__
(
self
,
models_parameters
):
self
.
_models_parameters
=
models_parameters
self
.
_regressor
=
RandomForestRegressor
(
n_estimators
=
self
.
_models_parameters
.
hyperparameters
[
'
n_estimators
'
],
random_state
=
models_parameters
.
seed
)
random_state
=
models_parameters
.
seed
,
n_jobs
=-
1
)
self
.
_extracted_forest_size
=
self
.
_models_parameters
.
extracted_forest_size
@property
...
...
@@ -34,6 +38,8 @@ class KMeansForestRegressor(BaseEstimator, metaclass=ABCMeta):
labels
=
np
.
array
(
kmeans
.
labels_
)
# for each cluster select the best tree on the validation set
"""
pruned_forest = list()
for c in range(self._extracted_forest_size):
index = np.where(labels == c)[0]
...
...
@@ -43,10 +49,31 @@ class KMeansForestRegressor(BaseEstimator, metaclass=ABCMeta):
tree_pred = score_metric(y_val, y_val_pred)
cluster.append(tree_pred)
best_tree_index = np.argmax(cluster)
pruned_forest
.
append
(
self
.
_regressor
.
estimators_
[
index
[
best_tree_index
]])
pruned_forest.append(self._regressor.estimators_[index[best_tree_index]])
"""
extracted_forest_sizes
=
list
(
range
(
self
.
_extracted_forest_size
))
with
tqdm_joblib
(
tqdm
(
total
=
self
.
_extracted_forest_size
,
disable
=
False
))
as
prune_forest_job_pb
:
pruned_forest
=
Parallel
(
n_jobs
=-
1
)(
delayed
(
self
.
_prune_forest_job
)(
prune_forest_job_pb
,
extracted_forest_sizes
[
i
],
labels
,
X_val
,
y_val
,
score_metric
)
for
i
in
range
(
self
.
_extracted_forest_size
))
self
.
_regressor
.
estimators_
=
pruned_forest
def
_prune_forest_job
(
self
,
prune_forest_job_pb
,
c
,
labels
,
X_val
,
y_val
,
score_metric
):
index
=
np
.
where
(
labels
==
c
)[
0
]
with
tqdm_joblib
(
tqdm
(
total
=
len
(
index
),
disable
=
False
))
as
cluster_job_pb
:
cluster
=
Parallel
(
n_jobs
=-
1
)(
delayed
(
self
.
_cluster_job
)(
cluster_job_pb
,
index
[
i
],
X_val
,
y_val
,
score_metric
)
for
i
in
range
(
len
(
index
)))
best_tree_index
=
np
.
argmax
(
cluster
)
prune_forest_job_pb
.
update
()
return
self
.
_regressor
.
estimators_
[
index
[
best_tree_index
]]
def
_cluster_job
(
self
,
cluster_job_pb
,
i
,
X_val
,
y_val
,
score_metric
):
y_val_pred
=
self
.
_regressor
.
estimators_
[
i
].
predict
(
X_val
)
tree_pred
=
score_metric
(
y_val
,
y_val_pred
)
cluster_job_pb
.
update
()
return
tree_pred
def
predict
(
self
,
X
):
return
self
.
_regressor
.
predict
(
X
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment