Skip to content
Snippets Groups Projects
Commit 95568681 authored by Leo Bouscarrat's avatar Leo Bouscarrat
Browse files

Merge branch '16-add-omp-no-weight' into 'master'

Resolve "Add OMP no weight"

Closes #16

See merge request !13
parents 29d4fc58 bde8f710
No related branches found
No related tags found
1 merge request!13Resolve "Add OMP no weight"
......@@ -68,10 +68,12 @@ class ModelRawResults(object):
return self._base_score_metric
def save(self, models_dir):
if not os.path.exists(models_dir):
os.mkdir(models_dir)
save_obj_to_pickle(models_dir + os.sep + 'model_raw_results.pickle',
self.__dict__)
@staticmethod
def load(models_dir):
def load(models_dir):
return load_obj_from_pickle(models_dir + os.sep + 'model_raw_results.pickle',
ModelRawResults)
......@@ -25,7 +25,6 @@ class OmpForest(BaseEstimator, metaclass=ABCMeta):
return self._base_forest_estimator.score(X, y)
def _base_estimator_predictions(self, X):
# We need to use predict_proba to get the probabilities of each class
return np.array([tree.predict(X) for tree in self._base_forest_estimator.estimators_]).T
@property
......@@ -125,3 +124,24 @@ class SingleOmpForest(OmpForest):
forest_predictions /= self._forest_norms
return self._make_omp_weighted_prediction(forest_predictions, self._omp, self._models_parameters.normalize_weights)
def predict_no_weights(self, X):
"""
Apply the SingleOmpForest to X without using the weights.
Make all the base tree predictions
:param X: a Forest
:return: a np.array of the predictions of the entire forest
"""
forest_predictions = self._base_estimator_predictions(X).T
if self._models_parameters.normalize_D:
forest_predictions /= self._forest_norms
weights = self._omp.coef_
omp_trees_indices = np.nonzero(weights)
select_trees = np.mean(forest_predictions[omp_trees_indices], axis=0)
return select_trees
......@@ -106,6 +106,36 @@ class OmpForestMulticlassClassifier(OmpForest):
max_preds = np.argmax(preds, axis=1)
return np.array(label_names)[max_preds]
def predict_no_weights(self, X):
"""
Apply the SingleOmpForest to X without using the weights.
Make all the base tree predictions
:param X: a Forest
:return: a np.array of the predictions of the entire forest
"""
forest_predictions = np.array([tree.predict_proba(X) for tree in self._base_forest_estimator.estimators_]).T
if self._models_parameters.normalize_D:
forest_predictions /= self._forest_norms
label_names = []
preds = []
num_class = 0
for class_label, omp_class in self._dct_class_omp.items():
weights = omp_class.coef_
omp_trees_indices = np.nonzero(weights)
label_names.append(class_label)
atoms_binary = (forest_predictions[num_class].T - 0.5) * 2 # centré réduit de 0/1 à -1/1
preds.append(np.sum(atoms_binary[omp_trees_indices], axis=0))
num_class += 1
preds = np.array(preds).T
max_preds = np.argmax(preds, axis=1)
return np.array(label_names)[max_preds]
def score(self, X, y, metric=DEFAULT_SCORE_METRIC):
predictions = self.predict(X)
......
......@@ -95,12 +95,18 @@ class Trainer(object):
)
self._end_time = time.time()
def __score_func(self, model, X, y_true):
def __score_func(self, model, X, y_true, weights=True):
if type(model) in [OmpForestRegressor, RandomForestRegressor, SimilarityForestRegressor]:
y_pred = model.predict(X)
if weights:
y_pred = model.predict(X)
else:
y_pred = model.predict_no_weights(X)
result = self._regression_score_metric(y_true, y_pred)
elif type(model) in [OmpForestBinaryClassifier, OmpForestMulticlassClassifier, RandomForestClassifier]:
y_pred = model.predict(X)
if weights:
y_pred = model.predict(X)
else:
y_pred = model.predict_no_weights(X)
if type(model) is OmpForestBinaryClassifier:
y_pred = y_pred.round()
result = self._classification_score_metric(y_true, y_pred)
......@@ -157,3 +163,29 @@ class Trainer(object):
self._logger.info("Base performance on dev: {}".format(results.dev_score_base))
self._logger.info("Performance on dev: {}".format(results.dev_score))
if type(model) not in [RandomForestRegressor, RandomForestClassifier]:
results = ModelRawResults(
model_object='',
training_time=self._end_time - self._begin_time,
datetime=datetime.datetime.now(),
train_score=self.__score_func(model, self._dataset.X_train, self._dataset.y_train, False),
dev_score=self.__score_func(model, self._dataset.X_dev, self._dataset.y_dev, False),
test_score=self.__score_func(model, self._dataset.X_test, self._dataset.y_test, False),
train_score_base=self.__score_func_base(model, self._dataset.X_train, self._dataset.y_train),
dev_score_base=self.__score_func_base(model, self._dataset.X_dev, self._dataset.y_dev),
test_score_base=self.__score_func_base(model, self._dataset.X_test, self._dataset.y_test),
score_metric=self._score_metric_name,
base_score_metric=self._base_score_metric_name
)
results.save(models_dir+'_no_weights')
self._logger.info("Base performance on test without weights: {}".format(results.test_score_base))
self._logger.info("Performance on test: {}".format(results.test_score))
self._logger.info("Base performance on train without weights: {}".format(results.train_score_base))
self._logger.info("Performance on train: {}".format(results.train_score))
self._logger.info("Base performance on dev without weights: {}".format(results.dev_score_base))
self._logger.info("Performance on dev: {}".format(results.dev_score))
......@@ -109,16 +109,16 @@ class Plotter(object):
fig, ax = plt.subplots()
n = len(all_experiment_scores)
nb_experiments = len(all_experiment_scores)
"""
Get as many different colors from the specified cmap (here nipy_spectral)
as there are curve to plot.
"""
colors = Plotter.get_colors_from_cmap(n)
colors = Plotter.get_colors_from_cmap(nb_experiments)
# For each curve to plot
for i in range(n):
# For each curve to plot
for i in range(nb_experiments):
# Retreive the scores in a list for each seed
experiment_scores = list(all_experiment_scores[i].values())
# Compute the mean and the std for the CI
......
......@@ -17,7 +17,7 @@ def retreive_extracted_forest_sizes_number(models_dir, experiment_id):
extracted_forest_sizes_root_path = experiment_seed_path + os.sep + 'extracted_forest_sizes'
return len(os.listdir(extracted_forest_sizes_root_path))
def extract_scores_across_seeds_and_extracted_forest_sizes(models_dir, results_dir, experiment_id):
def extract_scores_across_seeds_and_extracted_forest_sizes(models_dir, results_dir, experiment_id, weights=True):
experiment_id_path = models_dir + os.sep + str(experiment_id) # models/{experiment_id}
experiment_seed_root_path = experiment_id_path + os.sep + 'seeds' # models/{experiment_id}/seeds
......@@ -49,11 +49,15 @@ def extract_scores_across_seeds_and_extracted_forest_sizes(models_dir, results_d
# List the forest sizes in models/{experiment_id}/seeds/{seed}/extracted_forest_sizes
extracted_forest_sizes = os.listdir(extracted_forest_sizes_root_path)
extracted_forest_sizes = [nb_tree for nb_tree in extracted_forest_sizes if not 'no_weights' in nb_tree ]
extracted_forest_sizes.sort(key=int)
all_extracted_forest_sizes.append(list(map(int, extracted_forest_sizes)))
for extracted_forest_size in extracted_forest_sizes:
# models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size
if weights:
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size
else:
extracted_forest_size_path = extracted_forest_sizes_root_path + os.sep + extracted_forest_size + '_no_weights'
# Load models/{experiment_id}/seeds/{seed}/extracted_forest_sizes/{extracted_forest_size}/model_raw_results.pickle file
model_raw_results = ModelRawResults.load(extracted_forest_size_path)
# Save the scores
......@@ -360,6 +364,11 @@ if __name__ == "__main__":
omp_with_params_train_scores, omp_with_params_dev_scores, omp_with_params_test_scores, _, \
omp_with_params_experiment_score_metric = extract_scores_across_seeds_and_extracted_forest_sizes(
args.models_dir, args.results_dir, args.experiment_ids[2])
#omp_with_params_without_weights
logger.info('Loading omp_with_params experiment scores...')
omp_with_params_without_weights_train_scores, omp_with_params_without_weights_dev_scores, omp_with_params_without_weights_test_scores, _, \
omp_with_params_experiment_score_metric = extract_scores_across_seeds_and_extracted_forest_sizes(
args.models_dir, args.results_dir, args.experiment_ids[2], weights=False)
"""# base_with_params
logger.info('Loading base_with_params experiment scores 2...')
......@@ -384,8 +393,9 @@ if __name__ == "__main__":
Plotter.plot_stage2_losses(
file_path=output_path + os.sep + 'losses.png',
all_experiment_scores=[base_with_params_test_scores, random_with_params_test_scores, omp_with_params_test_scores],
all_labels=['base', 'random', 'omp'],
all_experiment_scores=[base_with_params_test_scores, random_with_params_test_scores, omp_with_params_test_scores,
omp_with_params_without_weights_test_scores],
all_labels=['base', 'random', 'omp', 'omp_without_weights'],
x_value=with_params_extracted_forest_sizes,
xlabel='Number of trees extracted',
ylabel=experiments_score_metric,
......
......@@ -13,9 +13,11 @@
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
58,
43535,
234234
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
......
......@@ -13,9 +13,11 @@
"test_size": 0.2,
"random_seed_number": 1,
"seeds": [
58,
43535,
234234
1,
2,
3,
4,
5
],
"subsets_used": "train,dev",
"normalize_weights": false,
......
results/boston/stage4/losses.png

43.7 KiB | W: | H:

results/boston/stage4/losses.png

110 KiB | W: | H:

results/boston/stage4/losses.png
results/boston/stage4/losses.png
results/boston/stage4/losses.png
results/boston/stage4/losses.png
  • 2-up
  • Swipe
  • Onion skin
results/iris/stage1/losses.png

64.7 KiB | W: | H:

results/iris/stage1/losses.png

66.1 KiB | W: | H:

results/iris/stage1/losses.png
results/iris/stage1/losses.png
results/iris/stage1/losses.png
results/iris/stage1/losses.png
  • 2-up
  • Swipe
  • Onion skin
for dataset in diamonds california_housing boston iris diabetes digits linnerud wine breast_cancer olivetti_faces 20newsgroups_vectorized lfw_pairs
seeds='1 2 3'
for dataset in boston iris diabetes digits linnerud wine breast_cancer olivetti_faces 20newsgroups_vectorized lfw_pairs california_housing diamonds
do
python code/compute_results.py --stage=1 --experiment_ids 1 2 3 4 5 6 --dataset_name=$dataset --models_dir=models/$dataset/stage1
python code/compute_results.py --stage=2 --experiment_ids 1 2 3 4 --dataset_name=$dataset --models_dir=models/$dataset/stage2
python code/compute_results.py --stage=3 --experiment_ids 1 2 3 --dataset_name=$dataset --models_dir=models/$dataset/stage3
python code/compute_results.py --stage=4 --experiment_ids 1 2 3 --dataset_name=$dataset --models_dir=models/$dataset/stage4
done
#!/bin/bash
core_number=5
walltime=1:00
seeds='1 2 3'
for dataset in diabetes #diamonds california_housing boston linnerud
do
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=1:00 "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --extraction_strategy=none --extracted_forest_size_stop=0.40 --extracted_forest_size_samples=30 --experiment_id=1 --models_dir=models/$dataset/stage5 --subsets_used train+dev,train+dev"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=1:00 "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --extraction_strategy=random --extracted_forest_size_stop=0.40 --extracted_forest_size_samples=30 --experiment_id=2 --models_dir=models/$dataset/stage5 --subsets_used train+dev,train+dev"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=1:00 "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --extraction_strategy=omp --extracted_forest_size_stop=0.40 --extracted_forest_size_samples=30 --experiment_id=3 --models_dir=models/$dataset/stage5 --subsets_used train+dev,train+dev"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=1:00 "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --extraction_strategy=similarity --extracted_forest_size_stop=0.40 --extracted_forest_size_samples=30 --experiment_id=4 --models_dir=models/$dataset/stage5 --subsets_used train+dev,train+dev"
done
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment