Let $X\in\mathbb{R}^{n \times d}$\todo{est-ce-que le non-gras majuscule est fréquent pour les matrices?} be the matrix data and $Y\in\mathbb{R}^{n}$ be the labels vector associated to the matrix $X$, where for each $i$, $\textbf{x}_i \in\mathcal{X}\subseteq\mathbb{R}^{d}$ and $y_i \in{\mathcal Y}\subseteq\mathbb{R}$. \\
Let $\textbf{X}\in\mathbb{R}^{n \times d}$\todo{est-ce-que le non-gras majuscule est fréquent pour les matrices?} be the matrix data and $\textbf{y}\in\mathbb{R}^{n}$ be the labels vector associated to the matrix $\textbf{X}$, where for each $i$, $y_i \in{\mathcal Y}$. \\
A random forest $F_{t_1, \dots, t_l}$\todo[inline]{confusion possible notation: majuscule non gras: fonction ou matrice? les deux, à éclaircir} is a classifier made of a collection of $l$ trees ${t_1, \dots, t_l}$. This forest can be seen as a function, and noted as:
A random forest $F_{T_1, \dots, T_l}$ is a classifier made of a collection of $l$ trees ${T_1, \dots, T_l}$. A single tree and a forest can both be seen as functions. To define this tools, let us introduce ${\cal H}$ as the set of all possible trees:
\todo[inline]{confusion possible notation: majuscule non gras: fonction ou matrice? les deux, à éclaircir}
where $f$ is a function which depend on the task\todo{f unclear: why to introduce it?}. In a regression setup, where ${\cal Y}=\mathbb{R}$\todo{I don't think it is usefull}, this function can be defined as:
where $H$ is a function which depend on the task\todo{f unclear: why to introduce it?}. In a regression setup, where ${\cal Y}=\mathbb{R}$\todo{I don't think it is usefull}, this function can be defined as:
where $\mathds{1}$ is the indicator function which return $1$ if its argument is correct, and $0$ otherwise.
%
\todo{$\mathds{1}$ not defined}We \todo{no we}will need to define the vector prediction of a forest for all the data matrix: $F_{t_1, \dots, t_l}(X)=\begin{pmatrix}
F_{t_1, \dots, t_l}(x_1)\\
\todo{$\mathds{1}$ not defined}We \todo{no we}will need to define the vector prediction of a forest for all the data matrix: $F_{t_1, \dots, t_l}(\textbf{X})=\begin{pmatrix}
F_{T_1, \dots, T_l}(\textbf{x}_1)\\
\dots\\
F_{t_1, \dots, t_l}(x_n)
F_{T_1, \dots, T_l}(\textbf{x}_n)
\end{pmatrix}.$\\
%
%
%
All these notations can be summarized in the following table:\\
All these notations can be summarized in Table \ref{table: notation}:\\
\begin{table}
\begin{tabular}{ l c }
%\hline
\textbf{x}& the vector x \\
$k$& the desired (pruned) forest size \\
$X$& the matrix $X$\\
${\calX}$& the data representation space\\
${\cal Y}$& the label representation space \\
lowercase & integer \\
bold lowercase& vector \\
bold capital & matrix \\
calligraphic letters & vector space \\
$F_{T_1, \dots, T_l}$& a forest of $l$ trees\\
$F_{T_1, \dots, T_l}(\textbf{x})\in{\calY}$& the predicted label of \textbf{x} by the forest $F_{T_1, \dots, T_l}$\\
$F_{T_1, \dots, T_l}(\textbf{X})\in{\cal Y}^n$& the predicted label of all the data of $\textbf{X}$ by the forest $F_{T_1, \dots, T_l}$\\
$n$& the number of data \\
$d$& the data dimension \\
$l$& the forest size \\
$F_{t_1, \dots, t_l}$& a forest of $l$ trees \\
$F_{t_1, \dots, t_l}(\textbf{x})\in{\cal Y}$& the predicted label of \textbf{x} by the forest $F_{t_1, \dots, t_l}$\\
$F_{t_1, \dots, t_l}(X)\in{\cal Y}^n$& the predicted label of all the data of $X$ by the forest $F_{t_1, \dots, t_l}$\\
%\hline
$l$& the initial forest size \\
$k$& the desired (pruned) forest size \\
\end{tabular}
\caption{Notations}
\caption{Notations used in this paper}
\label{table: notation}
\end{table}\todo[inline]{ajouter les codifications des notations: bold minuscule: vecteur; non-bold majuscule: matrix, etc..}