Skip to content
Snippets Groups Projects
Commit 6378245a authored by Charly Lamothe's avatar Charly Lamothe
Browse files

Merge branch 'master' into 17-adding-new-datasets

parents 2d896dd1 00d0f323
No related branches found
No related tags found
1 merge request!15Resolve "Adding new datasets"
from bolsonaro.models.model_raw_results import ModelRawResults from bolsonaro.models.model_raw_results import ModelRawResults
from bolsonaro.models.omp_forest_regressor import OmpForestRegressor from bolsonaro.models.omp_forest_regressor import OmpForestRegressor
from bolsonaro.models.omp_forest_classifier import OmpForestBinaryClassifier, OmpForestMulticlassClassifier from bolsonaro.models.omp_forest_classifier import OmpForestBinaryClassifier, OmpForestMulticlassClassifier
from bolsonaro.models.similarity_forest_regressor import SimilarityForestRegressor from bolsonaro.models.similarity_forest_regressor import SimilarityForestRegressor
from bolsonaro.error_handling.logger_factory import LoggerFactory from bolsonaro.error_handling.logger_factory import LoggerFactory
from bolsonaro.data.task import Task from bolsonaro.data.task import Task
from . import LOG_PATH from . import LOG_PATH
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
from sklearn.metrics import mean_squared_error, accuracy_score from sklearn.metrics import mean_squared_error, accuracy_score
import time import time
import datetime import datetime
import numpy as np import numpy as np
class Trainer(object): class Trainer(object):
""" """
Class capable of fitting any model object to some prepared data then evaluate and save results through the `train` method. Class capable of fitting any model object to some prepared data then evaluate and save results through the `train` method.
""" """
def __init__(self, dataset, regression_score_metric=mean_squared_error, classification_score_metric=accuracy_score, def __init__(self, dataset, regression_score_metric=mean_squared_error, classification_score_metric=accuracy_score,
base_regression_score_metric=mean_squared_error, base_classification_score_metric=accuracy_score): base_regression_score_metric=mean_squared_error, base_classification_score_metric=accuracy_score):
""" """
:param dataset: Object with X_train, y_train, X_dev, y_dev, X_test and Y_test attributes :param dataset: Object with X_train, y_train, X_dev, y_dev, X_test and Y_test attributes
""" """
self._dataset = dataset self._dataset = dataset
self._logger = LoggerFactory.create(LOG_PATH, __name__) self._logger = LoggerFactory.create(LOG_PATH, __name__)
self._regression_score_metric = regression_score_metric self._regression_score_metric = regression_score_metric
self._classification_score_metric = classification_score_metric self._classification_score_metric = classification_score_metric
self._base_regression_score_metric = base_regression_score_metric self._base_regression_score_metric = base_regression_score_metric
self._base_classification_score_metric = base_classification_score_metric self._base_classification_score_metric = base_classification_score_metric
self._score_metric_name = regression_score_metric.__name__ if dataset.task == Task.REGRESSION \ self._score_metric_name = regression_score_metric.__name__ if dataset.task == Task.REGRESSION \
else classification_score_metric.__name__ else classification_score_metric.__name__
self._base_score_metric_name = base_regression_score_metric.__name__ if dataset.task == Task.REGRESSION \ self._base_score_metric_name = base_regression_score_metric.__name__ if dataset.task == Task.REGRESSION \
else base_classification_score_metric.__name__ else base_classification_score_metric.__name__
@property @property
def score_metric_name(self): def score_metric_name(self):
return self._score_metric_name return self._score_metric_name
@property @property
def base_score_metric_name(self): def base_score_metric_name(self):
return self._base_score_metric_name return self._base_score_metric_name
def init(self, model, subsets_used='train,dev'): def init(self, model, subsets_used='train,dev'):
if type(model) in [RandomForestRegressor, RandomForestClassifier]: if type(model) in [RandomForestRegressor, RandomForestClassifier]:
if subsets_used == 'train,dev': if subsets_used == 'train,dev':
self._X_forest = self._dataset.X_train self._X_forest = self._dataset.X_train
self._y_forest = self._dataset.y_train self._y_forest = self._dataset.y_train
else: else:
self._X_forest = np.concatenate([self._dataset.X_train, self._dataset.X_dev]) self._X_forest = np.concatenate([self._dataset.X_train, self._dataset.X_dev])
self._y_forest = np.concatenate([self._dataset.y_train, self._dataset.y_dev]) self._y_forest = np.concatenate([self._dataset.y_train, self._dataset.y_dev])
self._logger.debug('Fitting the forest on train subset') self._logger.debug('Fitting the forest on train subset')
elif model.models_parameters.subsets_used == 'train,dev': elif model.models_parameters.subsets_used == 'train,dev':
self._X_forest = self._dataset.X_train self._X_forest = self._dataset.X_train
self._y_forest = self._dataset.y_train self._y_forest = self._dataset.y_train
self._X_omp = self._dataset.X_dev self._X_omp = self._dataset.X_dev
self._y_omp = self._dataset.y_dev self._y_omp = self._dataset.y_dev
self._logger.debug('Fitting the forest on train subset and OMP on dev subset.') self._logger.debug('Fitting the forest on train subset and OMP on dev subset.')
elif model.models_parameters.subsets_used == 'train+dev,train+dev': elif model.models_parameters.subsets_used == 'train+dev,train+dev':
self._X_forest = np.concatenate([self._dataset.X_train, self._dataset.X_dev]) self._X_forest = np.concatenate([self._dataset.X_train, self._dataset.X_dev])
self._X_omp = self._X_forest self._X_omp = self._X_forest
self._y_forest = np.concatenate([self._dataset.y_train, self._dataset.y_dev]) self._y_forest = np.concatenate([self._dataset.y_train, self._dataset.y_dev])
self._y_omp = self._y_forest self._y_omp = self._y_forest
self._logger.debug('Fitting both the forest and OMP on train+dev subsets.') self._logger.debug('Fitting both the forest and OMP on train+dev subsets.')
elif model.models_parameters.subsets_used == 'train,train+dev': elif model.models_parameters.subsets_used == 'train,train+dev':
self._X_forest = self._dataset.X_train self._X_forest = self._dataset.X_train
self._y_forest = self._dataset.y_train self._y_forest = self._dataset.y_train
self._X_omp = np.concatenate([self._dataset.X_train, self._dataset.X_dev]) self._X_omp = np.concatenate([self._dataset.X_train, self._dataset.X_dev])
self._y_omp = np.concatenate([self._dataset.y_train, self._dataset.y_dev]) self._y_omp = np.concatenate([self._dataset.y_train, self._dataset.y_dev])
else: else:
raise ValueError("Unknown specified subsets_used parameter '{}'".format(model.models_parameters.subsets_used)) raise ValueError("Unknown specified subsets_used parameter '{}'".format(model.models_parameters.subsets_used))
def train(self, model): def train(self, model):
""" """
:param model: An instance of either RandomForestRegressor, RandomForestClassifier, OmpForestRegressor, :param model: An instance of either RandomForestRegressor, RandomForestClassifier, OmpForestRegressor,
OmpForestBinaryClassifier, OmpForestMulticlassClassifier. OmpForestBinaryClassifier, OmpForestMulticlassClassifier.
:return: :return:
""" """
self._logger.debug('Training model using train set...') self._logger.debug('Training model using train set...')
self._begin_time = time.time() self._begin_time = time.time()
if type(model) in [RandomForestRegressor, RandomForestClassifier]: if type(model) in [RandomForestRegressor, RandomForestClassifier]:
model.fit( model.fit(
X=self._X_forest, X=self._X_forest,
y=self._y_forest y=self._y_forest
) )
else: else:
model.fit( model.fit(
self._X_forest, self._X_forest,
self._y_forest, self._y_forest,
self._X_omp, self._X_omp,
self._y_omp self._y_omp
) )
self._end_time = time.time() self._end_time = time.time()
def __score_func(self, model, X, y_true, weights=True): def __score_func(self, model, X, y_true, weights=True):
if type(model) in [OmpForestRegressor, RandomForestRegressor, SimilarityForestRegressor]: if type(model) in [OmpForestRegressor, RandomForestRegressor, SimilarityForestRegressor]:
if weights: if weights:
y_pred = model.predict(X) y_pred = model.predict(X)
else: else:
y_pred = model.predict_no_weights(X) y_pred = model.predict_no_weights(X)
result = self._regression_score_metric(y_true, y_pred) result = self._regression_score_metric(y_true, y_pred)
elif type(model) in [OmpForestBinaryClassifier, OmpForestMulticlassClassifier, RandomForestClassifier]: elif type(model) in [OmpForestBinaryClassifier, OmpForestMulticlassClassifier, RandomForestClassifier]:
if weights: if weights:
y_pred = model.predict(X) y_pred = model.predict(X)
else: else:
y_pred = model.predict_no_weights(X) y_pred = model.predict_no_weights(X)
if type(model) is OmpForestBinaryClassifier: if type(model) is OmpForestBinaryClassifier:
y_pred = np.sign(y_pred) y_pred = np.sign(y_pred)
y_pred = np.where(y_pred==0, 1, y_pred) y_pred = np.where(y_pred==0, 1, y_pred)
result = self._classification_score_metric(y_true, y_pred) result = self._classification_score_metric(y_true, y_pred)
return result return result
def __score_func_base(self, model, X, y_true): def __score_func_base(self, model, X, y_true):
if type(model) == OmpForestRegressor: if type(model) == OmpForestRegressor:
y_pred = model.predict_base_estimator(X) y_pred = model.predict_base_estimator(X)
result = self._base_regression_score_metric(y_true, y_pred) result = self._base_regression_score_metric(y_true, y_pred)
elif type(model) in [OmpForestBinaryClassifier, OmpForestMulticlassClassifier]: elif type(model) in [OmpForestBinaryClassifier, OmpForestMulticlassClassifier]:
y_pred = model.predict_base_estimator(X) y_pred = model.predict_base_estimator(X)
result = self._base_classification_score_metric(y_true, y_pred) result = self._base_classification_score_metric(y_true, y_pred)
elif type(model) == RandomForestClassifier: elif type(model) == RandomForestClassifier:
y_pred = model.predict(X) y_pred = model.predict(X)
result = self._base_classification_score_metric(y_true, y_pred) result = self._base_classification_score_metric(y_true, y_pred)
elif type(model) in [RandomForestRegressor, SimilarityForestRegressor]: elif type(model) in [RandomForestRegressor, SimilarityForestRegressor]:
y_pred = model.predict(X) y_pred = model.predict(X)
result = self._base_regression_score_metric(y_true, y_pred) result = self._base_regression_score_metric(y_true, y_pred)
return result return result
def compute_results(self, model, models_dir): def compute_results(self, model, models_dir):
""" """
:param model: Object with :param model: Object with
:param models_dir: Where the results will be saved :param models_dir: Where the results will be saved
""" """
model_weights = '' model_weights = ''
if type(model) in [OmpForestRegressor, OmpForestBinaryClassifier]: if type(model) in [OmpForestRegressor, OmpForestBinaryClassifier]:
model_weights = model._omp.coef_ model_weights = model._omp.coef_
elif type(model) == OmpForestMulticlassClassifier: elif type(model) == OmpForestMulticlassClassifier:
model_weights = model._dct_class_omp model_weights = model._dct_class_omp
elif type(model) == OmpForestBinaryClassifier: elif type(model) == OmpForestBinaryClassifier:
model_weights = model._omp model_weights = model._omp
results = ModelRawResults( results = ModelRawResults(
model_weights=model_weights, model_weights=model_weights,
training_time=self._end_time - self._begin_time, training_time=self._end_time - self._begin_time,
datetime=datetime.datetime.now(), datetime=datetime.datetime.now(),
train_score=self.__score_func(model, self._dataset.X_train, self._dataset.y_train), train_score=self.__score_func(model, self._dataset.X_train, self._dataset.y_train),
dev_score=self.__score_func(model, self._dataset.X_dev, self._dataset.y_dev), dev_score=self.__score_func(model, self._dataset.X_dev, self._dataset.y_dev),
test_score=self.__score_func(model, self._dataset.X_test, self._dataset.y_test), test_score=self.__score_func(model, self._dataset.X_test, self._dataset.y_test),
train_score_base=self.__score_func_base(model, self._dataset.X_train, self._dataset.y_train), train_score_base=self.__score_func_base(model, self._dataset.X_train, self._dataset.y_train),
dev_score_base=self.__score_func_base(model, self._dataset.X_dev, self._dataset.y_dev), dev_score_base=self.__score_func_base(model, self._dataset.X_dev, self._dataset.y_dev),
test_score_base=self.__score_func_base(model, self._dataset.X_test, self._dataset.y_test), test_score_base=self.__score_func_base(model, self._dataset.X_test, self._dataset.y_test),
score_metric=self._score_metric_name, score_metric=self._score_metric_name,
base_score_metric=self._base_score_metric_name base_score_metric=self._base_score_metric_name
) )
results.save(models_dir) results.save(models_dir)
self._logger.info("Base performance on test: {}".format(results.test_score_base)) self._logger.info("Base performance on test: {}".format(results.test_score_base))
self._logger.info("Performance on test: {}".format(results.test_score)) self._logger.info("Performance on test: {}".format(results.test_score))
self._logger.info("Base performance on train: {}".format(results.train_score_base)) self._logger.info("Base performance on train: {}".format(results.train_score_base))
self._logger.info("Performance on train: {}".format(results.train_score)) self._logger.info("Performance on train: {}".format(results.train_score))
self._logger.info("Base performance on dev: {}".format(results.dev_score_base)) self._logger.info("Base performance on dev: {}".format(results.dev_score_base))
self._logger.info("Performance on dev: {}".format(results.dev_score)) self._logger.info("Performance on dev: {}".format(results.dev_score))
if type(model) not in [RandomForestRegressor, RandomForestClassifier]: if type(model) not in [RandomForestRegressor, RandomForestClassifier]:
results = ModelRawResults( results = ModelRawResults(
model_weights='', model_weights='',
training_time=self._end_time - self._begin_time, training_time=self._end_time - self._begin_time,
datetime=datetime.datetime.now(), datetime=datetime.datetime.now(),
train_score=self.__score_func(model, self._dataset.X_train, self._dataset.y_train, False), train_score=self.__score_func(model, self._dataset.X_train, self._dataset.y_train, False),
dev_score=self.__score_func(model, self._dataset.X_dev, self._dataset.y_dev, False), dev_score=self.__score_func(model, self._dataset.X_dev, self._dataset.y_dev, False),
test_score=self.__score_func(model, self._dataset.X_test, self._dataset.y_test, False), test_score=self.__score_func(model, self._dataset.X_test, self._dataset.y_test, False),
train_score_base=self.__score_func_base(model, self._dataset.X_train, self._dataset.y_train), train_score_base=self.__score_func_base(model, self._dataset.X_train, self._dataset.y_train),
dev_score_base=self.__score_func_base(model, self._dataset.X_dev, self._dataset.y_dev), dev_score_base=self.__score_func_base(model, self._dataset.X_dev, self._dataset.y_dev),
test_score_base=self.__score_func_base(model, self._dataset.X_test, self._dataset.y_test), test_score_base=self.__score_func_base(model, self._dataset.X_test, self._dataset.y_test),
score_metric=self._score_metric_name, score_metric=self._score_metric_name,
base_score_metric=self._base_score_metric_name base_score_metric=self._base_score_metric_name
) )
results.save(models_dir+'_no_weights') results.save(models_dir+'_no_weights')
self._logger.info("Base performance on test without weights: {}".format(results.test_score_base)) self._logger.info("Base performance on test without weights: {}".format(results.test_score_base))
self._logger.info("Performance on test: {}".format(results.test_score)) self._logger.info("Performance on test: {}".format(results.test_score))
self._logger.info("Base performance on train without weights: {}".format(results.train_score_base)) self._logger.info("Base performance on train without weights: {}".format(results.train_score_base))
self._logger.info("Performance on train: {}".format(results.train_score)) self._logger.info("Performance on train: {}".format(results.train_score))
self._logger.info("Base performance on dev without weights: {}".format(results.dev_score_base)) self._logger.info("Base performance on dev without weights: {}".format(results.dev_score_base))
self._logger.info("Performance on dev: {}".format(results.dev_score)) self._logger.info("Performance on dev: {}".format(results.dev_score))
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment