Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
bolsonaro
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Luc Giffon
bolsonaro
Commits
4d4c0848
Commit
4d4c0848
authored
5 years ago
by
Charly Lamothe
Browse files
Options
Downloads
Patches
Plain Diff
Merge from master
parent
1e4c3afe
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
code/bolsonaro/models/kmeans_forest_regressor.py
+3
-3
3 additions, 3 deletions
code/bolsonaro/models/kmeans_forest_regressor.py
code/train.py
+2
-0
2 additions, 0 deletions
code/train.py
with
5 additions
and
3 deletions
code/bolsonaro/models/kmeans_forest_regressor.py
+
3
−
3
View file @
4d4c0848
...
@@ -19,7 +19,7 @@ class KMeansForestRegressor(BaseEstimator, metaclass=ABCMeta):
...
@@ -19,7 +19,7 @@ class KMeansForestRegressor(BaseEstimator, metaclass=ABCMeta):
def
__init__
(
self
,
models_parameters
,
score_metric
=
mean_squared_error
):
def
__init__
(
self
,
models_parameters
,
score_metric
=
mean_squared_error
):
self
.
_models_parameters
=
models_parameters
self
.
_models_parameters
=
models_parameters
self
.
_estimator
=
RandomForestRegressor
(
**
self
.
_models_parameters
.
hyperparameters
,
self
.
_estimator
=
RandomForestRegressor
(
**
self
.
_models_parameters
.
hyperparameters
,
random_state
=
self
.
_models_parameters
.
seed
,
n_jobs
=
-
1
)
random_state
=
self
.
_models_parameters
.
seed
,
n_jobs
=
2
)
self
.
_extracted_forest_size
=
self
.
_models_parameters
.
extracted_forest_size
self
.
_extracted_forest_size
=
self
.
_models_parameters
.
extracted_forest_size
self
.
_score_metric
=
score_metric
self
.
_score_metric
=
score_metric
self
.
_selected_trees
=
list
()
self
.
_selected_trees
=
list
()
...
@@ -46,7 +46,7 @@ class KMeansForestRegressor(BaseEstimator, metaclass=ABCMeta):
...
@@ -46,7 +46,7 @@ class KMeansForestRegressor(BaseEstimator, metaclass=ABCMeta):
# For each cluster select the best tree on the validation set
# For each cluster select the best tree on the validation set
extracted_forest_sizes
=
list
(
range
(
self
.
_extracted_forest_size
))
extracted_forest_sizes
=
list
(
range
(
self
.
_extracted_forest_size
))
with
tqdm_joblib
(
tqdm
(
total
=
self
.
_extracted_forest_size
,
disable
=
True
))
as
prune_forest_job_pb
:
with
tqdm_joblib
(
tqdm
(
total
=
self
.
_extracted_forest_size
,
disable
=
True
))
as
prune_forest_job_pb
:
pruned_forest
=
Parallel
(
n_jobs
=
-
1
)(
delayed
(
self
.
_prune_forest_job
)(
prune_forest_job_pb
,
pruned_forest
=
Parallel
(
n_jobs
=
2
)(
delayed
(
self
.
_prune_forest_job
)(
prune_forest_job_pb
,
extracted_forest_sizes
[
i
],
labels
,
X_val
,
y_val
,
self
.
_score_metric
)
extracted_forest_sizes
[
i
],
labels
,
X_val
,
y_val
,
self
.
_score_metric
)
for
i
in
range
(
self
.
_extracted_forest_size
))
for
i
in
range
(
self
.
_extracted_forest_size
))
...
@@ -56,7 +56,7 @@ class KMeansForestRegressor(BaseEstimator, metaclass=ABCMeta):
...
@@ -56,7 +56,7 @@ class KMeansForestRegressor(BaseEstimator, metaclass=ABCMeta):
def
_prune_forest_job
(
self
,
prune_forest_job_pb
,
c
,
labels
,
X_val
,
y_val
,
score_metric
):
def
_prune_forest_job
(
self
,
prune_forest_job_pb
,
c
,
labels
,
X_val
,
y_val
,
score_metric
):
index
=
np
.
where
(
labels
==
c
)[
0
]
index
=
np
.
where
(
labels
==
c
)[
0
]
with
tqdm_joblib
(
tqdm
(
total
=
len
(
index
),
disable
=
True
))
as
cluster_job_pb
:
with
tqdm_joblib
(
tqdm
(
total
=
len
(
index
),
disable
=
True
))
as
cluster_job_pb
:
cluster
=
Parallel
(
n_jobs
=
-
1
)(
delayed
(
self
.
_cluster_job
)(
cluster_job_pb
,
index
[
i
],
X_val
,
cluster
=
Parallel
(
n_jobs
=
2
)(
delayed
(
self
.
_cluster_job
)(
cluster_job_pb
,
index
[
i
],
X_val
,
y_val
,
score_metric
)
for
i
in
range
(
len
(
index
)))
y_val
,
score_metric
)
for
i
in
range
(
len
(
index
)))
best_tree_index
=
np
.
argmax
(
cluster
)
best_tree_index
=
np
.
argmax
(
cluster
)
prune_forest_job_pb
.
update
()
prune_forest_job_pb
.
update
()
...
...
This diff is collapsed.
Click to expand it.
code/train.py
+
2
−
0
View file @
4d4c0848
...
@@ -283,6 +283,8 @@ if __name__ == "__main__":
...
@@ -283,6 +283,8 @@ if __name__ == "__main__":
parameters
[
'
extracted_forest_size_samples
'
]
+
1
,
parameters
[
'
extracted_forest_size_samples
'
]
+
1
,
endpoint
=
True
)[
1
:]).
astype
(
np
.
int
)).
tolist
()
endpoint
=
True
)[
1
:]).
astype
(
np
.
int
)).
tolist
()
logger
.
info
(
f
"
extracted forest sizes:
{
parameters
[
'
extracted_forest_size
'
]
}
"
)
if
parameters
[
'
seeds
'
]
!=
None
and
parameters
[
'
random_seed_number
'
]
>
1
:
if
parameters
[
'
seeds
'
]
!=
None
and
parameters
[
'
random_seed_number
'
]
>
1
:
logger
.
warning
(
'
seeds and random_seed_number parameters are both specified. Seeds will be used.
'
)
logger
.
warning
(
'
seeds and random_seed_number parameters are both specified. Seeds will be used.
'
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment