Skip to content
Snippets Groups Projects
Commit 462e76fa authored by Charly Lamothe's avatar Charly Lamothe
Browse files

Fix merge conflits

parents baf8cb3c dd5e9cde
No related branches found
No related tags found
1 merge request!20Resolve "integration-sota"
......@@ -136,9 +136,9 @@ class SingleOmpForest(OmpForest):
Make all the base tree predictions
:param X: a Forest
:return: a np.array of the predictions of the entire forest
:return: a np.array of the predictions of the trees selected by OMP without applyong the weight
"""
forest_predictions = self._base_estimator_predictions(X).T
forest_predictions = np.array([tree.predict(X) for tree in self._base_forest_estimator.estimators_])
if self._models_parameters.normalize_D:
forest_predictions = forest_predictions.T
......@@ -146,7 +146,5 @@ class SingleOmpForest(OmpForest):
forest_predictions = forest_predictions.T
weights = self._omp.coef_
omp_trees_indices = np.nonzero(weights)[0]
select_trees = np.mean(forest_predictions[omp_trees_indices], axis=0)
select_trees = np.mean(forest_predictions[weights != 0], axis=0)
return select_trees
......@@ -42,9 +42,7 @@ class OmpForestBinaryClassifier(SingleOmpForest):
forest_predictions = forest_predictions.T
weights = self._omp.coef_
omp_trees_indices = np.nonzero(weights)
omp_trees_predictions = forest_predictions[omp_trees_indices].T[1]
omp_trees_predictions = forest_predictions[weights != 0].T[1]
# Here forest_pred is the probability of being class 1.
......
......@@ -366,7 +366,7 @@ if __name__ == "__main__":
omp_with_params_experiment_score_metric = extract_scores_across_seeds_and_extracted_forest_sizes(
args.models_dir, args.results_dir, int(args.experiment_ids[2]))
#omp_with_params_without_weights
logger.info('Loading omp_with_params experiment scores...')
logger.info('Loading omp_no_weights experiment scores...')
omp_with_params_without_weights_train_scores, omp_with_params_without_weights_dev_scores, omp_with_params_without_weights_test_scores, _, \
omp_with_params_experiment_score_metric = extract_scores_across_seeds_and_extracted_forest_sizes(
args.models_dir, args.results_dir, int(args.experiment_ids[2]), weights=False)
......
seeds='1 2 3'
for dataset in california_housing #kin8nm kr-vs-kp spambase steel-plates diabetes diamonds boston california_housing #lfw_pairs diamonds boston iris diabetes digits linnerud wine breast_cancer olivetti_faces 20newsgroups_vectorized california_housing
for dataset in kin8nm kr-vs-kp spambase steel-plates california_housing boston iris diabetes digits wine breast_cancer olivetti_faces diamonds
do
python code/compute_results.py --stage=1 --experiment_ids 1 2 3 4 5 6 --dataset_name=$dataset --models_dir=models/$dataset/stage1
python code/compute_results.py --stage=2 --experiment_ids 1 2 3 4 --dataset_name=$dataset --models_dir=models/$dataset/stage2
python code/compute_results.py --stage=3 --experiment_ids 1 2 3 --dataset_name=$dataset --models_dir=models/$dataset/stage3
python code/compute_results.py --stage=4 --experiment_ids 1 2 3 --dataset_name=$dataset --models_dir=models/$dataset/stage4
#python code/compute_results.py --stage=5 --experiment_ids 1 2 3 kmeans=5 --dataset_name=$dataset --models_dir=models/$dataset/stage5
#python code/compute_results.py --stage=5 --experiment_ids 1 2 3 ensemble=5 --dataset_name=$dataset --models_dir=models/$dataset/stage5_similarity
python code/compute_results.py --stage=5 --experiment_ids 1 2 3 similarity=4 kmeans=5 ensemble=6 --dataset_name=$dataset --models_dir=models/$dataset/stage5
done
......@@ -5,10 +5,10 @@ seeds='1 2 3 4 5'
for dataset in kin8nm kr-vs-kp spambase steel-plates california_housing boston iris diabetes digits wine breast_cancer olivetti_faces diamonds
do
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=1:00 "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 1 none_with_params --extraction_strategy=none --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=1 --models_dir=models/$dataset/stage1"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=1:00 "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 1 random_with_params --extraction_strategy=random --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=2 --models_dir=models/$dataset/stage1"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=1:00 "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 1 omp_with_params --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=3 --models_dir=models/$dataset/stage1"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=1:00 "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 1 none_wo_params --extraction_strategy=none --skip_best_hyperparams --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=4 --models_dir=models/$dataset/stage1"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=1:00 "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 1 random_wo_params --extraction_strategy=random --skip_best_hyperparams --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=5 --models_dir=models/$dataset/stage1"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=1:00 "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 1 omp_wo_params --skip_best_hyperparams --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=6 --models_dir=models/$dataset/stage1"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=$walltime "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 1 none_with_params --extraction_strategy=none --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=1 --models_dir=models/$dataset/stage1"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=$walltime "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 1 random_with_params --extraction_strategy=random --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=2 --models_dir=models/$dataset/stage1"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=$walltime "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 1 omp_with_params --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=3 --models_dir=models/$dataset/stage1"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=$walltime "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 1 none_wo_params --extraction_strategy=none --skip_best_hyperparams --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=4 --models_dir=models/$dataset/stage1"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=$walltime "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 1 random_wo_params --extraction_strategy=random --skip_best_hyperparams --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=5 --models_dir=models/$dataset/stage1"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=$walltime "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 1 omp_wo_params --skip_best_hyperparams --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=6 --models_dir=models/$dataset/stage1"
done
#!/bin/bash
core_number=5
walltime=1:00
walltime=$walltime
seeds='1 2 3 4 5'
for dataset in kin8nm kr-vs-kp spambase steel-plates california_housing boston iris diabetes digits wine breast_cancer olivetti_faces diamonds
do
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=1:00 "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 3 train-dev_subset --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --subsets_used=train,dev --experiment_id=1 --models_dir=models/$dataset/stage3"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=1:00 "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 3 train-dev_train-dev_subset --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --subsets_used=train+dev,train+dev --experiment_id=2 --models_dir=models/$dataset/stage3"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=1:00 "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 3 train-train-dev_subset --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --subsets_used=train,train+dev --experiment_id=3 --models_dir=models/$dataset/stage3"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=$walltime "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 3 train-dev_subset --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --subsets_used=train,dev --experiment_id=1 --models_dir=models/$dataset/stage3"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=$walltime "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 3 train-dev_train-dev_subset --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --subsets_used=train+dev,train+dev --experiment_id=2 --models_dir=models/$dataset/stage3"
oarsub -p "(gpu is null)" -l /core=$core_number,walltime=$walltime "conda activate test_env && python code/train.py --dataset_name=$dataset --seeds $seeds --save_experiment_configuration 3 train-train-dev_subset --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --subsets_used=train,train+dev --experiment_id=3 --models_dir=models/$dataset/stage3"
done
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment