Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Luc Giffon
bolsonaro
Commits
462e76fa
Commit
462e76fa
authored
Mar 10, 2020
by
Charly Lamothe
Browse files
Fix merge conflits
parents
baf8cb3c
dd5e9cde
Changes
6
Hide whitespace changes
Inline
Side-by-side
code/bolsonaro/models/omp_forest.py
View file @
462e76fa
...
...
@@ -136,9 +136,9 @@ class SingleOmpForest(OmpForest):
Make all the base tree predictions
:param X: a Forest
:return: a np.array of the predictions of the
entire fores
t
:return: a np.array of the predictions of the
trees selected by OMP without applyong the weigh
t
"""
forest_predictions
=
self
.
_base_estimator
_predictions
(
X
).
T
forest_predictions
=
np
.
array
([
tree
.
predict
(
X
)
for
tree
in
self
.
_base_
forest_
estimator
.
estimators_
])
if
self
.
_models_parameters
.
normalize_D
:
forest_predictions
=
forest_predictions
.
T
...
...
@@ -146,7 +146,5 @@ class SingleOmpForest(OmpForest):
forest_predictions
=
forest_predictions
.
T
weights
=
self
.
_omp
.
coef_
omp_trees_indices
=
np
.
nonzero
(
weights
)[
0
]
select_trees
=
np
.
mean
(
forest_predictions
[
omp_trees_indices
],
axis
=
0
)
select_trees
=
np
.
mean
(
forest_predictions
[
weights
!=
0
],
axis
=
0
)
return
select_trees
code/bolsonaro/models/omp_forest_classifier.py
View file @
462e76fa
...
...
@@ -42,9 +42,7 @@ class OmpForestBinaryClassifier(SingleOmpForest):
forest_predictions
=
forest_predictions
.
T
weights
=
self
.
_omp
.
coef_
omp_trees_indices
=
np
.
nonzero
(
weights
)
omp_trees_predictions
=
forest_predictions
[
omp_trees_indices
].
T
[
1
]
omp_trees_predictions
=
forest_predictions
[
weights
!=
0
].
T
[
1
]
# Here forest_pred is the probability of being class 1.
...
...
code/compute_results.py
View file @
462e76fa
...
...
@@ -366,7 +366,7 @@ if __name__ == "__main__":
omp_with_params_experiment_score_metric
=
extract_scores_across_seeds_and_extracted_forest_sizes
(
args
.
models_dir
,
args
.
results_dir
,
int
(
args
.
experiment_ids
[
2
]))
#omp_with_params_without_weights
logger
.
info
(
'Loading omp_
with_param
s experiment scores...'
)
logger
.
info
(
'Loading omp_
no_weight
s experiment scores...'
)
omp_with_params_without_weights_train_scores
,
omp_with_params_without_weights_dev_scores
,
omp_with_params_without_weights_test_scores
,
_
,
\
omp_with_params_experiment_score_metric
=
extract_scores_across_seeds_and_extracted_forest_sizes
(
args
.
models_dir
,
args
.
results_dir
,
int
(
args
.
experiment_ids
[
2
]),
weights
=
False
)
...
...
scripts/run_compute_results.sh
View file @
462e76fa
seeds
=
'1 2 3'
for
dataset
in
california_housing
#
kin8nm kr-vs-kp spambase steel-plates
diabetes diamonds boston california_housing #lfw_pairs diamonds
boston iris diabetes digits
linnerud
wine breast_cancer olivetti_faces
20newsgroups_vectorized california_housing
for
dataset
in
kin8nm kr-vs-kp spambase steel-plates
california_housing
boston iris diabetes digits wine breast_cancer olivetti_faces
diamonds
do
python code/compute_results.py
--stage
=
1
--experiment_ids
1 2 3 4 5 6
--dataset_name
=
$dataset
--models_dir
=
models/
$dataset
/stage1
python code/compute_results.py
--stage
=
2
--experiment_ids
1 2 3 4
--dataset_name
=
$dataset
--models_dir
=
models/
$dataset
/stage2
python code/compute_results.py
--stage
=
3
--experiment_ids
1 2 3
--dataset_name
=
$dataset
--models_dir
=
models/
$dataset
/stage3
python code/compute_results.py
--stage
=
4
--experiment_ids
1 2 3
--dataset_name
=
$dataset
--models_dir
=
models/
$dataset
/stage4
#python code/compute_results.py --stage=5 --experiment_ids 1 2 3 kmeans=5 --dataset_name=$dataset --models_dir=models/$dataset/stage5
#python code/compute_results.py --stage=5 --experiment_ids 1 2 3 ensemble=5 --dataset_name=$dataset --models_dir=models/$dataset/stage5_similarity
python code/compute_results.py
--stage
=
5
--experiment_ids
1 2 3
similarity
=
4
kmeans
=
5
ensemble
=
6
--dataset_name
=
$dataset
--models_dir
=
models/
$dataset
/stage5
done
scripts/run_stage1_experiments.sh
View file @
462e76fa
...
...
@@ -5,10 +5,10 @@ seeds='1 2 3 4 5'
for
dataset
in
kin8nm kr-vs-kp spambase steel-plates california_housing boston iris diabetes digits wine breast_cancer olivetti_faces diamonds
do
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
1:00
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 1 none_with_params --extraction_strategy=none --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=1 --models_dir=models/
$dataset
/stage1"
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
1:00
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 1 random_with_params --extraction_strategy=random --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=2 --models_dir=models/
$dataset
/stage1"
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
1:00
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 1 omp_with_params --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=3 --models_dir=models/
$dataset
/stage1"
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
1:00
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 1 none_wo_params --extraction_strategy=none --skip_best_hyperparams --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=4 --models_dir=models/
$dataset
/stage1"
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
1:00
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 1 random_wo_params --extraction_strategy=random --skip_best_hyperparams --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=5 --models_dir=models/
$dataset
/stage1"
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
1:00
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 1 omp_wo_params --skip_best_hyperparams --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=6 --models_dir=models/
$dataset
/stage1"
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
$walltime
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 1 none_with_params --extraction_strategy=none --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=1 --models_dir=models/
$dataset
/stage1"
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
$walltime
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 1 random_with_params --extraction_strategy=random --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=2 --models_dir=models/
$dataset
/stage1"
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
$walltime
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 1 omp_with_params --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=3 --models_dir=models/
$dataset
/stage1"
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
$walltime
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 1 none_wo_params --extraction_strategy=none --skip_best_hyperparams --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=4 --models_dir=models/
$dataset
/stage1"
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
$walltime
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 1 random_wo_params --extraction_strategy=random --skip_best_hyperparams --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=5 --models_dir=models/
$dataset
/stage1"
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
$walltime
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 1 omp_wo_params --skip_best_hyperparams --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --experiment_id=6 --models_dir=models/
$dataset
/stage1"
done
scripts/run_stage3_experiments.sh
View file @
462e76fa
#!/bin/bash
core_number
=
5
walltime
=
1:00
walltime
=
$walltime
seeds
=
'1 2 3 4 5'
for
dataset
in
kin8nm kr-vs-kp spambase steel-plates california_housing boston iris diabetes digits wine breast_cancer olivetti_faces diamonds
do
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
1:00
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 3 train-dev_subset --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --subsets_used=train,dev --experiment_id=1 --models_dir=models/
$dataset
/stage3"
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
1:00
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 3 train-dev_train-dev_subset --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --subsets_used=train+dev,train+dev --experiment_id=2 --models_dir=models/
$dataset
/stage3"
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
1:00
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 3 train-train-dev_subset --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --subsets_used=train,train+dev --experiment_id=3 --models_dir=models/
$dataset
/stage3"
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
$walltime
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 3 train-dev_subset --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --subsets_used=train,dev --experiment_id=1 --models_dir=models/
$dataset
/stage3"
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
$walltime
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 3 train-dev_train-dev_subset --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --subsets_used=train+dev,train+dev --experiment_id=2 --models_dir=models/
$dataset
/stage3"
oarsub
-p
"(gpu is null)"
-l
/core
=
$core_number
,walltime
=
$walltime
"conda activate test_env && python code/train.py --dataset_name=
$dataset
--seeds
$seeds
--save_experiment_configuration 3 train-train-dev_subset --extracted_forest_size_stop=1 --extracted_forest_size_samples=30 --subsets_used=train,train+dev --experiment_id=3 --models_dir=models/
$dataset
/stage3"
done
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment