Skip to content
Snippets Groups Projects
Commit 07127e25 authored by Charly Lamothe's avatar Charly Lamothe
Browse files

Merge branch '12-experiment-pipeline-density-plot' into 12-experiment-pipeline

parents 28dacbd4 eadac78d
No related branches found
No related tags found
1 merge request!16Resolve "Experiment pipeline"
......@@ -6,12 +6,12 @@ import datetime
class ModelRawResults(object):
def __init__(self, model_object, training_time,
def __init__(self, model_weights, training_time,
datetime, train_score, dev_score, test_score,
train_score_base, dev_score_base,
test_score_base, score_metric, base_score_metric):
self._model_object = model_object
self._model_weights = model_weights
self._training_time = training_time
self._datetime = datetime
self._train_score = train_score
......@@ -24,8 +24,8 @@ class ModelRawResults(object):
self._base_score_metric = base_score_metric
@property
def model_object(self):
return self.model_object
def model_weights(self):
return self.model_weights
@property
def training_time(self):
......
......@@ -8,6 +8,7 @@ from sklearn.base import BaseEstimator
class OmpForest(BaseEstimator, metaclass=ABCMeta):
def __init__(self, models_parameters, base_forest_estimator):
self._base_forest_estimator = base_forest_estimator
self._models_parameters = models_parameters
......@@ -96,6 +97,7 @@ class OmpForest(BaseEstimator, metaclass=ABCMeta):
pass
class SingleOmpForest(OmpForest):
def __init__(self, models_parameters, base_forest_estimator):
# fit_intercept shouldn't be set to False as the data isn't necessarily centered here
# normalization is handled outsite OMP
......
......@@ -126,8 +126,15 @@ class Trainer(object):
:param model: Object with
:param models_dir: Where the results will be saved
"""
model_weights = ''
if type(model) == RandomForestRegressor:
model_weights = model.coef_
elif type(model) == OmpForestRegressor:
model_weights = model._omp.coef_
results = ModelRawResults(
model_object='',
model_weights=model_weights,
training_time=self._end_time - self._begin_time,
datetime=datetime.datetime.now(),
train_score=self.__score_func(model, self._dataset.X_train, self._dataset.y_train),
......
......@@ -33,6 +33,8 @@ def extract_scores_across_seeds_and_extracted_forest_sizes(models_dir, results_d
# Used to check if all losses were computed using the same metric (it should be the case)
experiment_score_metrics = list()
all_weights = list()
# For each seed results stored in models/{experiment_id}/seeds
seeds = os.listdir(experiment_seed_root_path)
seeds.sort(key=int)
......@@ -120,6 +122,7 @@ if __name__ == "__main__":
DEFAULT_RESULTS_DIR = os.environ["project_dir"] + os.sep + 'results'
DEFAULT_MODELS_DIR = os.environ["project_dir"] + os.sep + 'models'
DEFAULT_PLOT_WEIGHT_DENSITY = False
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--stage', nargs='?', type=int, required=True, help='Specify the stage number among [1, 5].')
......@@ -130,6 +133,7 @@ if __name__ == "__main__":
parser.add_argument('--dataset_name', nargs='?', type=str, required=True, help='Specify the dataset name. TODO: read it from models dir directly.')
parser.add_argument('--results_dir', nargs='?', type=str, default=DEFAULT_RESULTS_DIR, help='The output directory of the results.')
parser.add_argument('--models_dir', nargs='?', type=str, default=DEFAULT_MODELS_DIR, help='The output directory of the trained models.')
parser.add_argument('--plot_weight_density', action='store_true', default=DEFAULT_PLOT_WEIGHT_DENSITY, help='Plot the weight density. Only working for regressor models for now.')
args = parser.parse_args()
if args.stage not in list(range(1, 6)):
......@@ -224,6 +228,8 @@ if __name__ == "__main__":
ylabel=experiments_score_metric,
title='Loss values of {}\nusing best and default hyperparameters'.format(args.dataset_name)
)
Plotter.plot_weight_density()
elif args.stage == 2:
if len(args.experiment_ids) != 4:
raise ValueError('In the case of stage 2, the number of specified experiment ids must be 4.')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment