Skip to content
Snippets Groups Projects
Select Git revision
  • correlation
  • master default protected
  • 24-non-negative-omp
  • 15-integration-sota
  • 20-coherence-des-arbres-de-predictions
  • 19-add-some-tests
  • 13-visualization
  • 17-adding-new-datasets
  • 12-experiment-pipeline
  • 14-correction-of-multiclass-classif
  • archive/10-gridsearching-of-the-base-forest
  • archive/farah_notation_and_related_work
  • archive/wip_clean_scripts
  • archive/4-implement-omp_forest_classifier
  • archive/5-add-plots-2
  • archive/Leo_Add_first_notebook
16 results

logger_factory.py

Blame
    • Charly LAMOTHE's avatar
      8b8eb9a5
      - In compute_results, add loadenv, load raw results, and update experiment_ids... · 8b8eb9a5
      Charly LAMOTHE authored
      - In compute_results, add loadenv, load raw results, and update experiment_ids so that it's possible to specify a list of experiments ids. The default behavior is to load all exp ids;
      - Fix normalization option in train.py. By default it normalizes D, and it doesn't when specify wo_normalization option;
      - Fix logger.warn to logger.warning in train.py
      - Replace the dumping of result in trainer.py by a dedicated class to save and load the trained model and training metadatas: model_raw_results.py;
      - Rename too long func DatasetLoader.load_from_name to DatasetLoader.load;
      - Add loading functions in dataset_parameters and model_parameters;
      - Set console logging level to INFO to summarize the most important console logs;
      - Add a load function in model_factory;
      - In omp_forest_regressor, move private funcs to the bottom of the file.
      
      TODO: compute the plot from the loaded raw results in compute_results file.
      8b8eb9a5
      History
      - In compute_results, add loadenv, load raw results, and update experiment_ids...
      Charly LAMOTHE authored
      - In compute_results, add loadenv, load raw results, and update experiment_ids so that it's possible to specify a list of experiments ids. The default behavior is to load all exp ids;
      - Fix normalization option in train.py. By default it normalizes D, and it doesn't when specify wo_normalization option;
      - Fix logger.warn to logger.warning in train.py
      - Replace the dumping of result in trainer.py by a dedicated class to save and load the trained model and training metadatas: model_raw_results.py;
      - Rename too long func DatasetLoader.load_from_name to DatasetLoader.load;
      - Add loading functions in dataset_parameters and model_parameters;
      - Set console logging level to INFO to summarize the most important console logs;
      - Add a load function in model_factory;
      - In omp_forest_regressor, move private funcs to the bottom of the file.
      
      TODO: compute the plot from the loaded raw results in compute_results file.