Newer
Older
bolsonaro
==============================
Bolsonaro project of QARMA non-permanents: deforesting random forest using OMP.
Project Organization
------------
├── LICENSE
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── external <- Data from third party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── notebooks <- notebooks of prototypes etc
│
├── models <- trained and serialized models, model predictions, or model summaries
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── setup.py <- makes project pip installable (pip install -e .) so bolsonaro can be imported
├── bolsonaro <- Source code for use in this project.
├── __init__.py <- Makes bolsonaro a Python module
│
├── data <- Scripts to download or generate data (to store under `/data/*relevant directory*`)
│ └── make_dataset.py
│
├── models <- Scripts to create base models (to store under `/models`)
│ │
│ └── create_model.py
│
└── visualization <- Scripts to create exploratory and results oriented visualizations (to store under `/reports/figures`)
└── visualize.py
--------
<p><small>Project based on the <a target="_blank" href="https://drivendata.github.io/cookiecutter-data-science/">cookiecutter data science project template</a>. #cookiecutterdatascience</small></p>
Instal project
--------------
Luc Giffon
committed
First install the project pacakge:
Luc Giffon
committed
Then create a file `.env` by copying the file `.env.example`:
Luc Giffon
committed
cp .env.example .env
Then you must set the project directory in the `.env` file :
project_dir = "path/to/your/project/directory"
This directory will be used for storing the model parameters.