Newer
Older
from bolsonaro.data.dataset_parameters import DatasetParameters
from bolsonaro.data.dataset_loader import DatasetLoader
from bolsonaro.models.model_factory import ModelFactory
from bolsonaro.models.model_parameters import ModelParameters
from bolsonaro.trainer import Trainer
from bolsonaro.utils import resolve_experiment_id
import argparse
import pathlib
import random
import os
import errno
if __name__ == "__main__":
default_dataset_name = 'boston'
default_normalize = False
default_forest_size = 100
default_extracted_forest_size = 10
default_models_dir = 'models'
default_dev_size = 0.2
default_test_size = 0.2
default_use_random_seed = True
default_random_seed_number = 1
begin_random_seed_range = 1
end_random_seed_range = 2000
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset_name', nargs='?', type=str, default=default_dataset_name, help='Specify the dataset. Regression: boston, diabetes, linnerud, california_housing. Classification: iris, digits, wine, breast_cancer, olivetti_faces, 20newsgroups, 20newsgroups_vectorized, lfw_people, lfw_pairs, covtype, rcv1, kddcup99.')
parser.add_argument('--normalize', action='store_true', default=default_normalize, help='Normalize the data by doing the L2 division of the pred vectors.')
parser.add_argument('--forest_size', nargs='?', type=int, default=default_forest_size, help='The number of trees of the random forest.')
parser.add_argument('--extracted_forest_size', nargs='+', type=int, default=default_extracted_forest_size, help='The number of trees selected by OMP.')
parser.add_argument('--models_dir', nargs='?', type=str, default=default_models_dir, help='The output directory of the trained models.')
parser.add_argument('--dev_size', nargs='?', type=float, default=default_dev_size, help='Dev subset ratio')
parser.add_argument('--test_size', nargs='?', type=float, default=default_test_size, help='Test subset ratio')
parser.add_argument('--use_random_seed', action='store_true', default=default_use_random_seed, help='Random seed used for the data split')
parser.add_argument('--random_seed_number', nargs='?', type=int, default=default_random_seed_number, help='Number of random seeds used')
args = parser.parse_args()
pathlib.Path(args.models_dir).mkdir(parents=True, exist_ok=True)
args.extracted_forest_size = args.extracted_forest_size \
if type(args.extracted_forest_size) == list \
else [args.extracted_forest_size]
random_seeds = [random.randint(begin_random_seed_range, end_random_seed_range) \
for i in range(args.random_seed_number)] \
if args.use_random_seed else None
experiment_id = resolve_experiment_id(args.models_dir)
experiment_id_str = str(experiment_id)
random_seed_str = str(random_seed)
models_dir = args.models_dir + os.sep + experiment_id_str + os.sep + 'seeds' + \
os.sep + random_seed_str
try:
os.makedirs(models_dir)
except OSError as e:
if e.errno != errno.EEXIST:
raise
dataset_parameters = DatasetParameters(
name=args.dataset_name,
test_size=args.test_size,
dev_size=args.dev_size,
random_state=random_seed,
normalize=args.normalize
dataset_parameters.save(models_dir, experiment_id_str)
dataset = DatasetLoader.load_from_name(dataset_parameters)
trainer = Trainer(dataset)
for extracted_forest_size in args.extracted_forest_size:
sub_models_dir = models_dir + os.sep + 'extracted_forest_size' + os.sep + str(extracted_forest_size)
try:
os.makedirs(sub_models_dir)
except OSError as e:
if e.errno != errno.EEXIST:
raise
model_parameters = ModelParameters(
forest_size=args.forest_size,
extracted_forest_size=extracted_forest_size,
seed=random_seed
)
model_parameters.save(sub_models_dir, experiment_id)
model = ModelFactory.build(dataset.task, model_parameters)
trainer.iterate(model, sub_models_dir)