Skip to content
Snippets Groups Projects
train.py 3.54 KiB
Newer Older
from bolsonaro.data.dataset_parameters import DatasetParameters
from bolsonaro.data.dataset_loader import DatasetLoader
from bolsonaro.models.model_factory import ModelFactory
from bolsonaro.trainer import Trainer

import argparse
import pathlib
import random


if __name__ == "__main__":
    default_dataset_name = 'boston'
    default_normalize = False
    default_forest_size = 100
    default_extracted_forest_size = 10
    default_results_dir = 'results'
    default_models_dir = 'models'
    default_dev_size = 0.2
    default_test_size = 0.2
    default_use_random_seed = True
    default_random_seed_number = 1
    begin_random_seed_range = 1
    end_random_seed_range = 2000

    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--dataset_name', nargs='?', type=str, default=default_dataset_name, help='Specify the dataset. Regression: boston, diabetes, linnerud, california_housing. Classification: iris, digits, wine, breast_cancer, olivetti_faces, 20newsgroups, 20newsgroups_vectorized, lfw_people, lfw_pairs, covtype, rcv1, kddcup99.')
    parser.add_argument('--normalize', action='store_true', default=default_normalize, help='Normalize the data by doing the L2 division of the pred vectors.')
    parser.add_argument('--forest_size', nargs='?', type=int, default=default_forest_size, help='The number of trees of the random forest.')
    parser.add_argument('--extracted_forest_size', nargs='+', type=int, default=default_extracted_forest_size, help='The number of trees selected by OMP.')
    parser.add_argument('--results_dir', nargs='?', type=str, default=default_results_dir, help='The output directory of the results.')
    parser.add_argument('--models_dir', nargs='?', type=str, default=default_models_dir, help='The output directory of the trained models.')
    parser.add_argument('--dev_size', nargs='?', type=float, default=default_dev_size, help='Dev subset ratio')
    parser.add_argument('--test_size', nargs='?', type=float, default=default_test_size, help='Test subset ratio')
    parser.add_argument('--use_random_seed', action='store_true', default=default_use_random_seed, help='Random seed used for the data split')
    parser.add_argument('--random_seed_number', nargs='?', type=int, default=default_random_seed_number, help='Number of random seeds used')
    args = parser.parse_args()

    pathlib.Path(args.results_dir).mkdir(parents=True, exist_ok=True)
    pathlib.Path(args.models_dir).mkdir(parents=True, exist_ok=True)

    random_seeds = [random.randint(begin_random_seed_range, end_random_seed_range) for i in range(args.random_seed_number)] \
        if args.use_random_seed else None

    for random_seed in random_seeds:
        dataset = DatasetLoader.load_from_name(
            DatasetParameters(
                name=args.dataset_name,
                test_size=args.test_size,
                dev_size=args.dev_size,
                random_state=random_seed,
                normalize=args.normalize
            )
        )

        for extracted_forest_size in args.extracted_forest_size:
            model = ModelFactory(
                task=dataset.task,
                forest_size=args.forest_size,
                extracted_forest_size=extracted_forest_size,
                seed=random_seed
            )

            trainer = Trainer(
                dataset=dataset,
                model=model,
                results_dir=args.results_dir,
                models_dir=args.models_dir
            )
            trainer.process()