Newer
Older
from bolsonaro.data.dataset_parameters import DatasetParameters
from bolsonaro.data.dataset_loader import DatasetLoader
from bolsonaro.models.model_factory import ModelFactory
from bolsonaro.models.model_parameters import ModelParameters
from bolsonaro.trainer import Trainer
from bolsonaro.utils import resolve_experiment_id
Charly LAMOTHE
committed
from bolsonaro import LOG_PATH
from bolsonaro.error_handling.logger_factory import LoggerFactory
Luc Giffon
committed
from dotenv import find_dotenv, load_dotenv
import argparse
import pathlib
import random
Luc Giffon
committed
# get environment variables in .env
Charly LAMOTHE
committed
load_dotenv(find_dotenv('.env.example'))
Luc Giffon
committed
default_normalize = True
Charly LAMOTHE
committed
default_wo_normalization = False
default_forest_size = 100
default_extracted_forest_size = 10
Luc Giffon
committed
# the models will be stored in a directory structure like: models/{experiment_id}/seeds/{seed_nb}/extracted_forest_size/{nb_extracted_trees}
default_models_dir = os.environ["project_dir"] + os.sep + 'models'
default_dev_size = 0.2
default_test_size = 0.2
default_random_seed_number = 1
begin_random_seed_range = 1
end_random_seed_range = 2000
Charly LAMOTHE
committed
default_train_on_subset = 'train'
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset_name', nargs='?', type=str, default=default_dataset_name, help='Specify the dataset. Regression: boston, diabetes, linnerud, california_housing. Classification: iris, digits, wine, breast_cancer, olivetti_faces, 20newsgroups, 20newsgroups_vectorized, lfw_people, lfw_pairs, covtype, rcv1, kddcup99.')
Charly LAMOTHE
committed
parser.add_argument('--wo_normalization', action='store_true', default=default_wo_normalization, help='Withouyt normalize the data by doing the L2 division of the pred vectors.')
parser.add_argument('--forest_size', nargs='?', type=int, default=default_forest_size, help='The number of trees of the random forest.')
parser.add_argument('--extracted_forest_size', nargs='+', type=int, default=default_extracted_forest_size, help='The number of trees selected by OMP.')
parser.add_argument('--models_dir', nargs='?', type=str, default=default_models_dir, help='The output directory of the trained models.')
Charly LAMOTHE
committed
parser.add_argument('--dev_size', nargs='?', type=float, default=default_dev_size, help='Dev subset ratio.')
parser.add_argument('--test_size', nargs='?', type=float, default=default_test_size, help='Test subset ratio.')
parser.add_argument('--random_seed_number', nargs='?', type=int, default=default_random_seed_number, help='Number of random seeds used.')
parser.add_argument('--seeds', nargs='+', type=int, default=None, help='Specific a list of seeds instead of generate them randomly')
parser.add_argument('--train_on_subset', nargs='?', type=str, default=default_train_on_subset, help='Specify on witch subset the model will be trained (either train or dev).')
args = parser.parse_args()
pathlib.Path(args.models_dir).mkdir(parents=True, exist_ok=True)
Charly LAMOTHE
committed
logger = LoggerFactory.create(LOG_PATH, os.path.basename(__file__))
Charly LAMOTHE
committed
args.extracted_forest_size = args.extracted_forest_size \
if type(args.extracted_forest_size) == list \
else [args.extracted_forest_size]
Charly LAMOTHE
committed
if args.seeds != None and args.random_seed_number > 1:
Charly LAMOTHE
committed
logger.warning('seeds and random_seed_number parameters are both specified. Seeds will be used.')
Charly LAMOTHE
committed
seeds = args.seeds if args.seeds is not None \
else [random.randint(begin_random_seed_range, end_random_seed_range) \
for i in range(args.random_seed_number)]
Charly LAMOTHE
committed
normalize = default_normalize and args.wo_normalization is False
logger.debug('normalize={}'.format(normalize))
experiment_id = resolve_experiment_id(args.models_dir)
experiment_id_str = str(experiment_id)
with tqdm(seeds) as seed_bar:
for seed in seed_bar:
seed_bar.set_description('seed={}'.format(seed))
seed_str = str(seed)
models_dir = args.models_dir + os.sep + experiment_id_str + os.sep + 'seeds' + \
os.sep + seed_str
pathlib.Path(models_dir).mkdir(parents=True, exist_ok=True)
dataset_parameters = DatasetParameters(
name=args.dataset_name,
test_size=args.test_size,
dev_size=args.dev_size,
random_state=seed,
normalize=normalize,
train_on_subset=args.train_on_subset
dataset_parameters.save(models_dir, experiment_id_str)
dataset = DatasetLoader.load(dataset_parameters)
with tqdm(args.extracted_forest_size) as extracted_forest_size_bar:
for extracted_forest_size in extracted_forest_size_bar:
extracted_forest_size_bar.set_description('extracted_forest_size={}'.format(extracted_forest_size))
sub_models_dir = models_dir + os.sep + 'extracted_forest_size' + os.sep + str(extracted_forest_size)
pathlib.Path(sub_models_dir).mkdir(parents=True, exist_ok=True)
model_parameters = ModelParameters(
forest_size=args.forest_size,
extracted_forest_size=extracted_forest_size,
seed=seed,
normalize=normalize
)
model_parameters.save(sub_models_dir, experiment_id)
model = ModelFactory.build(dataset.task, model_parameters)
trainer.train(model, sub_models_dir)