Skip to content
Snippets Groups Projects
Réduction_de_fôrets_aléatoires_with_dev-Copy1.ipynb 22.2 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Groupe de travail\n",
    "\n",
    "Le but de ce notebook est de tester l'idée de réduction des random forest"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Import scikit-learn"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from statistics import mean \n",
    "\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import pandas as pd\n",
    "from sklearn.datasets import load_boston, load_breast_cancer\n",
    "from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor\n",
    "from sklearn.linear_model import OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV\n",
    "from sklearn.metrics import mean_squared_error\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.neighbors.kde import KernelDensity"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Variables globales"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "NB_TREES = 100"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Load jeu de donnée"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "X, y = load_boston(return_X_y=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def train_forest(X_train, y_train, nb_trees, random_seed):\n",
    "    '''\n",
    "    Function that will train a random forest with nb_tress\n",
    "    :param X_train: list of inputs\n",
    "    :param y_train: list of results\n",
    "    :param nb_trees: int, number of trees in the forest\n",
    "    :param random_seed: int, seed for the random_states\n",
    "    :return: a RandomForestRegressor\n",
    "    '''\n",
    "    \n",
    "     # Entraînement de la forêt aléatoire\n",
    "    \n",
    "    regressor = RandomForestRegressor(n_estimators=nb_trees, random_state = random_seed)\n",
    "    regressor.fit(X_train, y_train)\n",
    "    return regressor\n",
    "\n",
    "\n",
    "def extract_subforest(random_forest, X_train, y_train, nb_trees_extracted):\n",
    "    '''\n",
    "    Function use to get the weight list of a subforest of size nb_trees_extracted for random_forest\n",
    "    using OMP.\n",
    "    :param random_forest: a RandomForestRegressor\n",
    "    :param X_train: list of inputs\n",
    "    :param y_train: list of results\n",
    "    :param nb_trees_extracted: int, number of trees extracted \n",
    "    :return: a list of int, weight of each tree\n",
    "    '''\n",
    "    \n",
    "    # Accès à la la liste des arbres\n",
    "\n",
    "    tree_list = random_forest.estimators_\n",
    "    \n",
    "    # Création de la matrice des prédictions de chaque arbre\n",
    "    \n",
    "    # L'implémentation de scikit-learn est un peu différente que celle vue en réunion, D est de même taille que X \n",
    "    # et chaque élément est composé de d signaux, d'où la création suivante de D où on créé une liste pour chaque\n",
    "    # élément comprenant les valeurs prédites par chaque arbre\n",
    "\n",
    "    D = [[tree.predict([elem])[0] for tree in tree_list] for elem in X_train]\n",
    "    \n",
    "    # OMP\n",
    "    \n",
    "    omp = OrthogonalMatchingPursuit(n_nonzero_coefs=nb_trees_extracted, fit_intercept = False, normalize=False)\n",
    "    omp.fit(D, y_train)\n",
    "    \n",
    "    weights = omp.coef_\n",
    "    \n",
    "    return weights\n",
    "\n",
    "\n",
    "def compute_results(weights, random_forest, X_train, X_dev, X_test, y_train, y_dev, y_test, \n",
    "                    nb_trees, nb_trees_extracted, random_seed):\n",
    "    '''\n",
    "    Compute the score of the different techniques\n",
    "    :param weights: weights given by the OMP\n",
    "    :param random_forest: a RandomForestRegressor\n",
    "    :param X_train: list of inputs\n",
    "    :param X_dev: list of inputs\n",
    "    :param X_test: list of inputs\n",
    "    :param y_train: list of results\n",
    "    :param y_dev: list of results\n",
    "    :param y_test: list of results\n",
    "    :param nb_trees: int, number of trees in the main forest\n",
    "    :param nb_trees_extracted: int, number of trees extracted from the main forest\n",
    "    :param random_seed: int, seed for the random_states\n",
    "    :return: 4 results of 4 different methods, in order: results of the main forest, \n",
    "    results of the weighted results of the extracted trees, results of the mean results \n",
    "    of the extracted trees, results of a random_forest train with nb_trees_extracted directly\n",
    "    '''\n",
    "    \n",
    "    # Calcul des différents résultats\n",
    "    \n",
    "    res_base_forest = mean_squared_error(random_forest.predict(X_test), y_test)\n",
    "    \n",
    "    # Résultat de la forêt extraite avec l'OMP, où chaque arbre est multiplié par son poids\n",
    "    \n",
    "    y_pred = [sum([random_forest.estimators_[i].predict([elem])[0] * weights[i] for i in range(nb_trees)]) \n",
    "              for elem in X_test]\n",
    "    res_extract_weight = mean_squared_error(y_pred, y_test)\n",
    "    \n",
    "    # Résultat de la forêt extraite avec l'OMP, où chaque arbre est multiplié par son poids\n",
    "    \n",
    "    y_pred = [sum([random_forest.estimators_[i].predict([elem])[0] * weights[i] for i in range(nb_trees)])/sum(weights) \n",
    "              for elem in X_test]\n",
    "    res_extract_weight_norm = mean_squared_error(y_pred, y_test)\n",
    "    \n",
    "    # Résultat de la forêt extraite avec l'OMP, où on prends la moyenne des arbres extraits\n",
    "    \n",
    "    y_pred = [mean([random_forest.estimators_[i].predict([elem])[0] for i in range(nb_trees) if abs(weights[i]) >= 0.01])\n",
    "              for elem in X_test]\n",
    "    res_extract_mean = mean_squared_error(y_pred, y_test)\n",
    "    \n",
    "    # Résultat d'une forêt avec le même nombre d'arbre que le nombre d'arbre extrait\n",
    "\n",
    "    small_forest = train_forest(np.concatenate((X_train, X_dev)), np.concatenate((y_train, y_dev)), nb_trees_extracted, random_seed)\n",
    "    res_small_forest = mean_squared_error(small_forest.predict(X_test), y_test)\n",
    "    \n",
    "    return res_base_forest, res_extract_weight, res_extract_weight_norm, res_extract_mean, res_small_forest, weights\n",
    "\n",
    "\n",
    "def extract_and_get_results(random_forest, X_train, X_dev, X_test, y_train, y_dev, y_test, nb_trees, \n",
    "                            nb_trees_extracted, random_seed):\n",
    "    '''\n",
    "    Extract the subforest and returns the resuts of the different methods\n",
    "    :param X_train: list of inputs\n",
    "    :param X_dev: list of inputs\n",
    "    :param X_test: list of inputs\n",
    "    :param y_train: list of results\n",
    "    :param y_dev: list of results\n",
    "    :param y_test: list of results\n",
    "    :param nb_trees: int, number of trees in the main forest\n",
    "    :param nb_trees_extracted: int, number of trees extracted from the main forest\n",
    "    :param random_seed: int, seed for the random_states\n",
    "    :return: 4 results of 4 different methods, in order: results of the main forest, \n",
    "    results of the weighted results of the extracted trees, results of the mean results \n",
    "    of the extracted trees, results of a random_forest train with nb_trees_extracted directly\n",
    "    '''\n",
    "    \n",
    "    weights = extract_subforest(random_forest, X_dev, y_dev, nb_trees_extracted)\n",
    "    \n",
    "    res_base_forest, res_extract_weight, res_extract_weight_norm, res_extract_mean, res_small_forest = \\\n",
    "        compute_results(weights, random_forest, X_train, X_dev, X_test, y_train, y_dev, y_test, \n",
    "                        nb_trees, nb_trees_extracted, random_seed)\n",
    "    \n",
    "    return res_base_forest, res_extract_weight, res_extract_weight_norm, res_extract_mean, res_small_forest, weights\n",
    "    \n",
    "    \n",
    "\n",
    "def train_extract_subforest(X_train, X_test, y_train, y_test, nb_trees, nb_trees_extracted, random_seed):\n",
    "    '''\n",
    "    Function that takes data, number of trees and a random seed. Train a forest with nb_trees, extract\n",
    "    with OMP nb_trees_extracted and compare the results of the different method\n",
    "    :param X_train: list of inputs\n",
    "    :param X_test: list of inputs\n",
    "    :param y_train: list of results\n",
    "    :param y_test: list of results\n",
    "    :param nb_trees: int, number of trees in the main forest\n",
    "    :param nb_trees_extracted: int, number of trees extracted from the main forest\n",
    "    :param random_seed: int, seed for the random_states\n",
    "    :return: 4 results of 4 different methods, in order: results of the main forest, \n",
    "    results of the weighted results of the extracted trees, results of the mean results \n",
    "    of the extracted trees, results of a random_forest train with nb_trees_extracted directly\n",
    "    '''\n",
    "    \n",
    "    random_forest = train_forest(X_train, y_train, nb_trees, random_seed)\n",
    "    \n",
    "    weight = extract_subforest(random_forest, X_train, y_train, nb_trees_extracted)\n",
    "    \n",
    "    res_base_forest, res_extract_weight, res_extract_mean, res_small_forest = \\\n",
    "        compute_results(weight, random_forest, X_train, X_test, y_train, y_test,\n",
    "                        nb_trees, nb_trees_extracted, random_seed)\n",
    "    \n",
    "    \n",
    "    return res_base_forest, res_extract_weight, res_extract_mean, res_small_forest"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "results_global = []\n",
    "results_dev_global = []\n",
    "\n",
    "nb_trees = 100\n",
    "random_seeds = list(range(10))\n",
    "\n",
    "for random_seed in random_seeds:\n",
    "    \n",
    "    # Séparation train_test avec random_state\n",
    "    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = random_seed)\n",
    "    X_train, X_dev, y_train, y_dev = train_test_split(X_train, y_train, test_size = 0.5, random_state = random_seed)\n",
    "\n",
    "    random_forest = train_forest(X_train, y_train, NB_TREES, random_seed)\n",
    "    \n",
    "    results = []\n",
    "    results_dev = []\n",
    "\n",
    "    for nb_trees_extracted in [int(NB_TREES/k) for k in [2, 5, 10, 20, 50, 100]]:\n",
    "        \n",
    "        weights = extract_subforest(random_forest, X_dev, y_dev, nb_trees_extracted)\n",
    "\n",
    "        results.append(compute_results(weights, random_forest, X_train, X_dev, X_test, y_train, y_dev, y_test, \n",
    "                        nb_trees, nb_trees_extracted, random_seed))\n",
    "        \n",
    "        \n",
    "        results_dev.append(compute_results(weights, random_forest, X_train, X_dev, X_dev, y_train, y_dev, y_dev, \n",
    "                           nb_trees, nb_trees_extracted, random_seed))\n",
    "\n",
    "    results_global.append(results)\n",
    "    results_dev_global.append(results_dev)\n",
    "    print('over')\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def plot_results(results_global, title_graph):\n",
    "    def plot_mean_and_CI(mean, lb, ub, x_value, color_mean=None, color_shading=None, label=None):\n",
    "        # plot the shaded range of the confidence intervals\n",
    "        plt.fill_between(x_value, ub, lb,\n",
    "                         color=color_shading, alpha=.5)\n",
    "        # plot the mean on top\n",
    "        plt.plot(x_value, mean, color_mean, label = label)\n",
    "\n",
    "    means_results = np.array(\n",
    "        [\n",
    "            [mean(\n",
    "                [results[i][k] for results in results_global] # loop over the different experiments\n",
    "            ) for i in range(len(results_global[0]))] # loop over the different number of trees extracted\n",
    "        for k in range(5)]) # loop over the different methods\n",
    "    std_results = np.array(\n",
    "        [\n",
    "            [np.std(\n",
    "                [results[i][k] for results in results_global]\n",
    "            ) for i in range(len(results_global[0]))]\n",
    "        for k in range(5)])\n",
    "\n",
    "    x_value = [int(NB_TREES/k) for k in [2, 5, 10, 20, 50, 100]]\n",
    "    # plot the data\n",
    "    fig = plt.figure(1, figsize=(15, 10))\n",
    "    plot_mean_and_CI(means_results[0], means_results[0] + std_results[0], means_results[0] - std_results[0],\n",
    "                     x_value, color_mean='k', color_shading='k', label='Results of the base forest (on train set)')\n",
    "\n",
    "    plot_mean_and_CI(means_results[1], means_results[1] + std_results[1], means_results[1] - std_results[1],\n",
    "                     x_value, color_mean='darkorange', color_shading='darkorange', \n",
    "                     label='Weighted results of the extracted trees')\n",
    "    plot_mean_and_CI(means_results[2], means_results[2] + std_results[2], means_results[2] - std_results[2], \n",
    "                     x_value, color_mean='red', color_shading='red',\n",
    "x                    label='Weighted results of the extracted trees normalized')\n",
    "\n",
    "    plot_mean_and_CI(means_results[3], means_results[3] + std_results[3], means_results[3] - std_results[3], \n",
    "                     x_value, color_mean='b', color_shading='b',\n",
    "                    label='Mean results of the extracted trees')\n",
    "    plot_mean_and_CI(means_results[4], means_results[4] + std_results[4], means_results[4] - std_results[4], \n",
    "                     x_value, color_mean='g', color_shading='g',\n",
    "                    label='Results of a forest train with number of trees extracted (train+dev set)')\n",
    "    plt.xlabel('Number of trees extracted')\n",
    "    plt.ylabel('MSE')\n",
    "    plt.title(title_graph)\n",
    "\n",
    "    plt.legend(loc=\"upper right\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "plot_results(results_global, 'Reduction of a forest with 100 trees, 10 iterations with different seed, score on train set')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "plot_results(results_dev_global, 'Reduction of a forest with 100 trees, 10 iterations with different seed, score on dev set')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "for results in results_global:\n",
    "    x_value = [int(NB_TREES/k) for k in [5, 10, 50, 100, 500, 1000]]\n",
    "    plt.xlabel('Number of trees extracted')\n",
    "    plt.ylabel('MSE')\n",
    "    plt.plot(x_value, [elem[1] for elem in results], color='darkorange',\n",
    "             label='Weighted results of the average trees')\n",
    "    plt.plot(x_value, [elem[2] for elem in results], color='red',\n",
    "            label='Weighted results of the average trees normalized')\n",
    "    plt.plot(x_value, [elem[3] for elem in results], color='blue',\n",
    "             label='Mean results of the average trees')\n",
    "    plt.plot(x_value, [elem[4] for elem in results], color='green',\n",
    "             label='Results of a forest train with number of trees extracted')\n",
    "    plt.plot(x_value, [elem[0] for elem in results], color='black',\n",
    "             label='Results of the base forest')\n",
    "    plt.figure(1, figsize=(15, 10))\n",
    "\n",
    "    plt.legend(loc=\"upper right\")\n",
    "    \n",
    "\n",
    "\n",
    "    fig_acc_rec = plt.gcf()\n",
    "\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def weight_density(list_weight):\n",
    "    print(list_weight)\n",
    "    X_plot = [np.exp(elem) for elem in list_weight]\n",
    "    fig, ax = plt.subplots()\n",
    "\n",
    "    for kernel in ['gaussian', 'tophat', 'epanechnikov']:\n",
    "        kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X_plot)\n",
    "        log_dens = kde.score_samples(X_plot)\n",
    "        ax.plot(X_plot[:, 0], np.exp(log_dens), '-',\n",
    "                label=\"kernel = '{0}'\".format(kernel))\n",
    "\n",
    "    ax.legend(loc='upper left')\n",
    "    ax.plot(X[:, 0], -0.005 - 0.01 * np.random.random(X.shape[0]), '+k')\n",
    "\n",
    "    ax.set_xlim(-4, 9)\n",
    "    ax.set_ylim(-0.02, 0.4)\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for results in results_global:\n",
    "    ax = pd.Series([[e for e in test[5] if e != 0] for test in results][1]).plot.kde(figsize=(15, 10))\n",
    "    \n",
    "legends = ['OK'] * 10\n",
    "legends[4] = 'Problème'\n",
    "# ax.legend(legends)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "np.array(\n",
    "    [\n",
    "        [\n",
    "            [results[i][k] for results in results_global]\n",
    "        for i in range(len(results_global[0]))]\n",
    "    for k in range(5)])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "[[sum(elem[5]) for elem in results] for results in results_global] "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "results_global[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Entraînement de la forêt aléatoire"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "regressor = RandomForestRegressor(n_estimators=NB_TREES, random_state = RANDOM_SEED)\n",
    "\n",
    "regressor.fit(X_train, y_train)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Accès à la la liste des arbres\n",
    "\n",
    "tree_list = regressor.estimators_"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Création de la matrice des prédictions de chaque arbre"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# L'implémentation de scikit-learn est un peu différente que celle vue en réunion, D est de même taille que X \n",
    "# et chaque élément est composé de d signaux, d'où la création suivante de D où on créé une liste pour chaque\n",
    "# élément comprenant les valeurs prédites par chaque arbre\n",
    "\n",
    "D = [[tree.predict([elem])[0] for tree in tree_list] for elem in X_train]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "omp = OrthogonalMatchingPursuit(n_nonzero_coefs=NB_TREES_EXTRACTED)\n",
    "omp.fit(D, y_train)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "# Matrice avec poids de chaque arbre\n",
    "\n",
    "omp.coef_"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Calcul des résultats des différentes méthodes"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Résultat de la forêt de base"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "mean_squared_error(regressor.predict(X_test), y_test)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Résultat de la forêt extraite avec l'OMP, où chaque arbre est multiplié par son poids"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "y_pred = [sum([tree_list[i].predict([elem])[0] * omp.coef_[i] for i in range(NB_TREES)]) for elem in X_test]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "mean_squared_error(y_pred, y_test)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Résultat de la forêt extraite avec l'OMP, où on prends la moyenne des arbres extraits"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "y_pred = [mean([tree_list[i].predict([elem])[0] for i in range(NB_TREES) if omp.coef_[i] != 0])for elem in X_test]\n",
    "mean_squared_error(y_pred, y_test)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Résultat d'une forêt avec le même nombre d'arbre que le nombre d'arbre extrait"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "regressor_small = RandomForestRegressor(n_estimators=NB_TREES_EXTRACTED, random_state=RANDOM_SEED)\n",
    "regressor_small.fit(X_train, y_train)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "mean_squared_error(regressor_small.predict(X_test), y_test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}