Skip to content
Snippets Groups Projects
Select Git revision
  • 9329c5fd78f3a6e7734b12d002341e8ffe959b83
  • main default protected
2 results

PyAVA.py

Blame
  • combo.py 28.92 KiB
    # -*- coding: utf-8 -*-
    # ######### COPYRIGHT #########
    #
    # Copyright(c) 2020
    # -----------------
    #
    # * Université d'Aix Marseille (AMU) -
    # * Centre National de la Recherche Scientifique (CNRS) -
    # * Université de Toulon (UTLN).
    # * Copyright © 2019-2020 AMU, CNRS, UTLN
    #
    # Contributors:
    # ------------
    #
    # * Sokol Koço <sokol.koco_AT_lis-lab.fr>
    # * Cécile Capponi <cecile.capponi_AT_univ-amu.fr>
    # * Florent Jaillet <florent.jaillet_AT_math.cnrs.fr>
    # * Dominique Benielli <dominique.benielli_AT_univ-amu.fr>
    # * Riikka Huusari <rikka.huusari_AT_univ-amu.fr>
    # * Baptiste Bauvin <baptiste.bauvin_AT_univ-amu.fr>
    # * Hachem Kadri <hachem.kadri_AT_lis-lab.fr>
    #
    # Description:
    # -----------
    #
    # The multimodal package implement classifiers multiview, 
    # MumboClassifier class, MuComboClassifier class, MVML class, MKL class.
    # compatible with sklearn
    #
    # Version:
    # -------
    #
    # * multimodal version = 0.0.dev0
    #
    # Licence:
    # -------
    #
    # License: New BSD License
    #
    #
    # ######### COPYRIGHT #########
    r"""
    
    This module contains a **Mu**\ lti\ **C**\ onfusion **M**\ Matrix **B**\ osting (**CoMBo**)
    estimator for classification implemented in the ``MuComboClassifier`` class.
    """
    
    import numpy as np
    from sklearn.base import ClassifierMixin
    from sklearn.ensemble import BaseEnsemble
    from sklearn.ensemble._forest import BaseForest
    from sklearn.metrics import accuracy_score
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.tree._tree import DTYPE
    from sklearn.tree import BaseDecisionTree
    from sklearn.utils import check_array, check_X_y, check_random_state
    from sklearn.utils.multiclass import check_classification_targets
    from sklearn.utils.validation import check_is_fitted, has_fit_parameter
    from cvxopt import solvers, matrix, spdiag, exp, spmatrix, mul, div
    from .boost import UBoosting
    import warnings
    
    
    class MuComboClassifier(BaseEnsemble, ClassifierMixin, UBoosting):
        r"""It then iterates the process on the same dataset but where the weights of
        incorrectly classified instances are adjusted such that subsequent
        classifiers focus more on difficult cases.
        A MuCoMBo classifier.
    
        A MuMBo classifier is a meta-estimator that implements a multimodal
        (or multi-view) boosting algorithm:
    
        It fits a set of classifiers on the original dataset splitted into several
        views and retains the classifier obtained for the best view.
    
        This class implements the MuMBo algorithm [1]_.
    
        Parameters
        ----------
        base_estimator : object, optional (default=DecisionTreeClassifier)
            Base estimator from which the boosted ensemble is built.
            Support for sample weighting is required, as well as proper `classes_`
            and `n_classes_` attributes. The default is a DecisionTreeClassifier
            with parameter ``max_depth=1``.
    
        n_estimators : integer, optional (default=50)
            Maximum number of estimators at which boosting is terminated.
    
        random_state : int, RandomState instance or None, optional (default=None)
            If int, random_state is the seed used by the random number generator;
            If RandomState instance, random_state is the random number generator;
            If None, the random number generator is the RandomState instance used
            by `np.random`.
    
    
        Attributes
        ----------
        estimators\_ : list of classifiers
            Collection of fitted sub-estimators.
    
        classes\_ : numpy.ndarray, shape = (n_classes,)
            Classes labels.
    
        n_classes\_ : int
            Number of classes.
    
        n_views\_ : int
            Number of views
    
        estimator_weights\_ : numpy.ndarray of floats, shape = (len(estimators\_),)
            Weights for each estimator in the boosted ensemble.
    
        estimator_errors_ : array of floats
            Empirical loss for each iteration.
    
    
        best\_views\_ : numpy.ndarray of integers, shape = (len(estimators\_),)
            Indices of the best view for each estimator in the boosted ensemble.
    
        n_yi\_ : numpy ndarray of int contains number of train sample for each classe shape (n_classes,)
    
        Examples
        --------
        >>> from multimodal.boosting.combo import MuComboClassifier
        >>> from sklearn.datasets import load_iris
        >>> X, y = load_iris(return_X_y=True)
        >>> views_ind = [0, 2, 4]  # view 0: sepal data, view 1: petal data
        >>> clf = MuComboClassifier(random_state=0)
        >>> clf.fit(X, y, views_ind)  # doctest: +NORMALIZE_WHITESPACE
        MuComboClassifier(random_state=0)
        >>> print(clf.predict([[ 5.,  3.,  1.,  1.]]))
        [0]
        >>> views_ind = [[0, 2], [1, 3]]  # view 0: length data, view 1: width data
        >>> clf = MuComboClassifier(random_state=0)
        >>> clf.fit(X, y, views_ind)  # doctest: +NORMALIZE_WHITESPACE
        MuComboClassifier(random_state=0)
        >>> print(clf.predict([[ 5.,  3.,  1.,  1.]]))
        [0]
    
        >>> from sklearn.tree import DecisionTreeClassifier
        >>> base_estimator = DecisionTreeClassifier(max_depth=2)
        >>> clf = MuComboClassifier(base_estimator=base_estimator, random_state=1)
        >>> clf.fit(X, y, views_ind)  # doctest: +NORMALIZE_WHITESPACE
        MuComboClassifier(base_estimator=DecisionTreeClassifier(max_depth=2),
                          random_state=1)
        >>> print(clf.predict([[ 5.,  3.,  1.,  1.]]))
        [0]
    
        See also
        --------
        sklearn.ensemble.AdaBoostClassifier,
        sklearn.ensemble.GradientBoostingClassifier,
        sklearn.tree.DecisionTreeClassifier
    
        References
        ----------
    
        .. [1] Ko\c{c}o, Sokol and Capponi, C{\'e}cile
               A Boosting Approach to Multiview Classification with Cooperation,
               2011,Proceedings of the 2011 European Conference on Machine Learning
               and Knowledge Discovery in Databases - Volume Part II, 209--228 Springer-Verlag
               https://link.springer.com/chapter/10.1007/978-3-642-23783-6_1
    
        .. [2] Sokol Koço,
               "Tackling the uneven views problem with cooperation based ensemble
               learning methods",
               PhD Thesis, Aix-Marseille Université, 2013,
               http://www.theses.fr/en/2013AIXM4101.
        """
    
        def __init__(self,
                     base_estimator=None,
                     n_estimators=50,
                     random_state=None): # n_estimators=50,
            super(MuComboClassifier, self).__init__(
                base_estimator=base_estimator,
                n_estimators=n_estimators)
            self.random_state = random_state
    
        def _validate_estimator(self):
            """Check the estimator and set the base_estimator_ attribute."""
            super(MuComboClassifier, self)._validate_estimator(
                default=DecisionTreeClassifier(max_depth=1))
    
            if not has_fit_parameter(self.base_estimator_, "sample_weight"):
                raise ValueError("%s doesn't support sample_weight."
                                 % self.base_estimator_.__class__.__name__)
    
        def _init_var(self, n_views, y):
            "Create and initialize the variables used by the MuMBo algorithm."
            n_classes = self.n_classes_
            n_samples = y.shape[0]
            # n_yi = np.unique(y, return_inverse=True)
            cost = np.ones((n_views, n_samples, n_classes))
            score_function = np.zeros((n_views, n_samples, n_classes))
            n_yi_s = np.zeros(n_classes, dtype=np.int)
            for indice_class in range(n_classes):
                # n_yi number of examples of the class y_i
                n_yi = np.where(y==indice_class)[0].shape[0]
                n_yi_s[indice_class] = int(n_yi)
                cost[:, :, indice_class] /=   n_yi
            cost[:, np.arange(n_samples), y] *= -(n_classes-1)
            label_score = np.zeros((n_views, n_samples, n_classes))
            label_score_global = np.zeros((n_samples, n_classes))
            predicted_classes = np.empty((n_views, n_samples), dtype=np.int64)
            beta_class = np.ones((n_views, n_classes)) / n_classes
            return (cost, label_score, label_score_global, predicted_classes,
                    score_function, beta_class, n_yi_s)
    
        def _compute_dist(self, cost, y):
            """Compute the sample distribution (i.e. the weights to use)."""
            n_samples = y.shape[0]
            # dist is forced to be c-contiguous so that sub-arrays of dist used
            # as weights for the weak classifiers are also c-contiguous, which is
            # required by some scikit-learn classifiers (for example
            # sklearn.svm.SVC)
            dist = np.empty(cost.shape[:2], dtype=cost.dtype, order="C")
            # NOTE: In Sokol Koco's PhD thesis, the formula for dist is mistakenly given
            # with a minus sign in section 2.2.2 page 31
            sum_cost = np.sum(cost[:, np.arange(n_samples), y], axis=1)[:, np.newaxis]
            sum_cost[sum_cost==0] = 1
            dist[:, :] = cost[:, np.arange(n_samples), y] / sum_cost
            return dist
    
        def _indicatrice(self, predicted_classes, y_i):
            n_samples = y_i.shape[0]
            indicate_ones = np.zeros((self.n_views_, n_samples, self.n_classes_), dtype=np.int)
            indicatrice_one_yi = np.zeros((self.n_views_, n_samples, self.n_classes_), dtype=np.int)
            indicate_ones[np.arange(self.n_views_)[:, np.newaxis],
                        np.arange(n_samples)[np.newaxis, :],
                        predicted_classes[np.arange(self.n_views_), :]] = 1
            indicate_ones[:, np.arange(n_samples), y_i] = 0
            indicatrice_one_yi[:, np.arange(n_samples), y_i] = 1
            delta = np.ones((self.n_views_, n_samples, self.n_classes_), dtype=np.int)
            delta[:, np.arange(n_samples), y_i] = -1
            return indicate_ones, indicatrice_one_yi, delta
    
        def _compute_edges(self, cost, predicted_classes, y):
            """Compute edge values for the cost matrices for all the views."""
            n_views = predicted_classes.shape[0]
            n_samples = y.shape[0]
            edges = - np.sum(
                cost[np.arange(n_views)[:, np.newaxis],
                     np.arange(n_samples)[np.newaxis, :],
                     predicted_classes[np.arange(n_views), :]], axis=1) \
                / (np.sum(cost, axis=(1, 2))
                   - np.sum(cost[:, np.arange(n_samples), y], axis=1))
            return edges
    
        def _compute_alphas(self, edges):
            """Compute values of confidence rate alpha given edge values."""
            np.where(edges > 1.0, edges, 1.0)
            alphas = 0.5 * np.log((1. + edges) / (1. - edges))
            if np.any(np.isinf(alphas)):
                alphas[np.where(np.isinf(alphas))[0]] = 1.0
            if np.any(np.isnan(alphas)):
                alphas[np.where(np.isnan(alphas))[0]] = 1.0
            return alphas
    
        def _compute_cost(self, label_score, predicted_classes, y, alphas, betas,
                          use_coop_coef=True):
            """Update label_score and compute the cost matrices for all views."""
            # use_coop_coef is a boolean parameter used to choose if the
            # cooperation coefficients are computed and taken into account when
            # updating the cost matrices.
            # It is introduced here for future explorations.
            n_views = predicted_classes.shape[0]
            n_samples = y.shape[0]
            if use_coop_coef:
                increment = alphas[:, np.newaxis, np.newaxis] * betas[:, np.newaxis, :]
                increment = np.tile(increment,(1, n_samples, 1))
            else:
                increment = np.tile(alphas[:, np.newaxis, np.newaxis], (1, n_samples, self.n_classes_))
            label_score[np.arange(n_views)[:, np.newaxis],
                        np.arange(n_samples)[np.newaxis, :],
                        predicted_classes[np.arange(n_views), :]] += increment[np.arange(n_views)[:, np.newaxis],
                                                                               np.arange(n_samples)[np.newaxis, :] ,
                                                                               predicted_classes[np.arange(n_views), :]]
            cost = np.exp(
                label_score
                - label_score[:, np.arange(n_samples), y][:, :, np.newaxis]) / self.n_yi_[np.newaxis, np.newaxis, :]
            score_function_dif = np.exp(
                label_score
                - label_score[:, np.arange(n_samples), y][:, :, np.newaxis]) / self.n_yi_[np.newaxis, np.newaxis, :]
            cost[:, np.arange(n_samples), y] -= np.sum(cost, axis=2)
            return (cost, label_score, score_function_dif)
    
        def _prepare_beta_solver(self):
            view = self.n_views_
            m = self.n_classes_
            A = matrix(0.0, (view, m * view))
            one_vector = np.ones((m))
            for v in range(view):
                A[v, v*m : (v*m) +m] = 1
            b = matrix(1.0, (view,1))
            l={'l': 2*view*m}
            G = matrix(0.0, (2*m * view, m * view))
            one_diag_matrix = matrix(1.0, (m*view,1))
            G_1 = spdiag(one_diag_matrix)
            G[0:m * view, :] = G_1
            G[m* view:2* m * view, :] = -1.0* G_1
            h = matrix(0.0, (2*m*view,1))
            h[0:m*view] = 1.0
            return A, b, G, h, l
    
        def _compute_betas(self, alphas, y, score_function_dif_Tminus1, predicted_classes):
            """
            minimization of
            :math:` argmin on /beta_{t,c} sum_{v,i,c!=y_i}{frac{1}{n_y_i} cost_{t-1} exp{/apha_{v} \beta_{c}^{b}'
    
            Parameters
            ----------
            edges : array-like
            alphas
            y
            estimators
    
            Returns
            -------
            betas arrays
            """
            indicat, indicate_yi, delta = self._indicatrice(predicted_classes, y)
            delta_vue = np.block(np.split(delta, self.n_views_, axis=0)).squeeze()
            indicate_vue = np.block(np.split(indicat, self.n_views_, axis=0)).squeeze()
            indicate_vue_yi = np.block(np.split(indicate_yi, self.n_views_, axis=0)).squeeze()
            score_function_Tminus1_vue = np.block(np.split(score_function_dif_Tminus1, self.n_views_, axis=0)).squeeze()
            A, b, G, h, l = self._prepare_beta_solver()
            solver = self._solver_cp_forbeta(alphas, indicate_vue, indicate_vue_yi, delta_vue, score_function_Tminus1_vue, A, b, G, h, l)
            betas = np.array(solver)
            betas = betas.reshape((self.n_views_, self.n_classes_))
            return betas
    
        def _solver_cp_forbeta(self, alphas, indicate_vue, indicate_vue_yi, delta_vue, score_function_dif_Tminus1, A, b, G, h, l):
            solvers.options['show_progress'] = False
            n_view = self.n_views_
            m = self.n_classes_
            coef = 1.0/np.tile(self.n_yi_, self.n_views_).squeeze() * score_function_dif_Tminus1
            zeta_v =  np.repeat(alphas, self.n_classes_) * indicate_vue * delta_vue
            zeta_v_yi = np.repeat(alphas, self.n_classes_) * indicate_vue_yi * delta_vue
            zeta = zeta_v + zeta_v_yi
            zeta2 = zeta**2
            def F(x=None, z=None):
                if x is None:
                    # iteratif algo
                    # choice x initial
                    return 0, matrix(1.0, (n_view*m, 1))
                if min(x) < 0.0:
                    return None   # impossible
                # begin iteration
                f = sum(matrix(coef * exp( matrix(zeta * x.T))))
                Df = matrix(np.sum( zeta * coef * exp(matrix( zeta * x.T)), axis=0) ).T  # -(x**-1).T
                if z is None: return f, Df
                H = spdiag(z[0] * matrix(np.sum(coef * zeta2 * exp( matrix(zeta* x.T) ), axis=0) ))  # beta**(-2))
                return f, Df, H
            try:
                solver = solvers.cp(F, A=A, b=b, G=G, h=h, dim={'l':2*n_view*m})['x']
            except ValueError or ArithmeticError or OverflowError as e:
                norm = np.sum(1.0/self.n_yi_)
                yi_norm = self.n_yi_ * (norm )
                solver = matrix(1.0/np.tile(yi_norm, n_view).squeeze(), (n_view * m, 1))
                print("Value Error on the evaluation on beta coefficient %s "% e)
            return solver
    
        def _compute_predictions(self, X):
            """Compute predictions for all the stored estimators on the data X."""
            n_samples = X.shape[0]
            n_estimators = len(self.estimators_)
            predictions = np.zeros((n_samples, n_estimators), dtype=np.int64)
            for ind_estimator, estimator in enumerate(self.estimators_):
                # no best view in mucumbo but all view
                # ind_view = self.best_views_[ind_estimator]
                ind_view = ind_estimator % self.n_views_
                predictions[:, ind_estimator] \
                    = estimator.predict(X._extract_view(ind_view))
            return predictions
    
        def fit(self, X, y, views_ind=None):
            """Build a multimodal boosted classifier from the training set (X, y).
    
            Parameters
            ----------
            X : dict dictionary with all views
                or
                `MultiModalData` ,  `MultiModalArray`, `MultiModalSparseArray`
                or
                {array-like, sparse matrix}, shape = (n_samples, n_features)
                Training multi-view input samples.
                Sparse matrix can be CSC, CSR, COO, DOK, or LIL.
                COO, DOK and LIL are converted to CSR.
    
            y : array-like, shape = (n_samples,)
                Target values (class labels).
    
            views_ind : array-like (default=[0, n_features//2, n_features])
                Paramater specifying how to extract the data views from X:
    
                - If views_ind is a 1-D array of sorted integers, the entries
                  indicate the limits of the slices used to extract the views,
                  where view ``n`` is given by
                  ``X[:, views_ind[n]:views_ind[n+1]]``.
    
                  With this convention each view is therefore a view (in the NumPy
                  sense) of X and no copy of the data is done.
    
                - If views_ind is an array of arrays of integers, then each array
                  of integers ``views_ind[n]`` specifies the indices of the view
                  ``n``, which is then given by ``X[:, views_ind[n]]``.
    
                  With this convention each view creates therefore a partial copy
                  of the data in X. This convention is thus more flexible but less
                  efficient than the previous one.
    
            Returns
            -------
            self : object
                Returns self.
    
            Raises
            ------
            ValueError  estimator must support sample_weight
    
            ValueError where `X` and `view_ind` are not compatibles
            """
            warnings.filterwarnings("ignore", category=RuntimeWarning)
            if (self.base_estimator is None or
                    isinstance(self.base_estimator, (BaseDecisionTree,
                                                     BaseForest))):
                dtype = DTYPE
                accept_sparse = 'csc'
            else:
                dtype = None
                accept_sparse = ['csr', 'csc']
            self.X_ = self._global_X_transform(X, views_ind=views_ind)
            views_ind_, n_views = self.X_._validate_views_ind(self.X_.views_ind,
                                                              self.X_.shape[1])
            check_X_y(self.X_, y)
            if not isinstance(y, np.ndarray):
                y = np.asarray(y)
            check_classification_targets(y)
            self._validate_estimator()
    
            self.n_iterations_ = self.n_estimators // n_views
            self.classes_, y = np.unique(y, return_inverse=True)
            self.n_classes_ = len(self.classes_)
            self.n_views_ = n_views
            self.n_features_ = self.X_.shape[1]
            self.n_features_in_ = self.n_features_ 
            if self.n_classes_ == 1:
                # This case would lead to division by 0 when computing the cost
                # matrix so it needs special handling (but it is an obvious case as
                # there is only one single class in the data).
                self.estimators_ = []
                self.estimator_weights_alpha_ = np.array([], dtype=np.float64)
                self.estimator_weights_beta_ = np.zeros((self.n_iterations_, n_views), dtype=np.float)
                self.estimator_errors_ = np.array([], dtype=np.float64)
                return
            self.estimators_ = []
            self.estimator_weights_alpha_ = np.zeros((self.n_iterations_, n_views), dtype=np.float64)
            self.estimator_weights_beta_ = np.zeros((self.n_iterations_, n_views, self.n_classes_), dtype=np.float)
            self.estimator_errors_ = np.zeros((n_views, self.n_iterations_), dtype=np.float64)
    
            random_state = check_random_state(self.random_state)
            (cost, label_score, label_score_global,
             predicted_classes, score_function_dif, betas, n_yi) = self._init_var(n_views, y)
            self.n_yi_ = n_yi
            for current_iteration in range(self.n_iterations_):
                # list of h at stage t
                dist = self._compute_dist(cost, y)
                # get h_t _i  with edges delta
                for ind_view in range(n_views):
                    estimator = self._make_estimator(append=False,
                                                     random_state=random_state)
                    estimator.fit(self.X_._extract_view(ind_view), y,
                                  sample_weight=dist[ind_view, :])
                    predicted_classes[ind_view, :] = estimator.predict(
                        self.X_._extract_view(ind_view))
                    self.estimators_.append(estimator)
    
                # end of choose cost matrix
                #   TO DO estimator_errors_ estimate
                ###########################################
                #self.estimator_errors_[current_iteration] = to do
                # update C_t de g
    
                edges = self._compute_edges(cost, predicted_classes, y)
                alphas = self._compute_alphas(edges)
                self.estimator_weights_alpha_[current_iteration, :] = alphas
    
                betas = self._compute_betas(alphas, y, score_function_dif, predicted_classes)
                self.estimator_weights_beta_[current_iteration, :, :] = betas
                # update cost matrices C_t_j ...
                cost, label_score, score_function_dif = self._compute_cost(
                    label_score, predicted_classes, y, alphas, betas, True)
            return self
    
        def decision_function(self, X):
            """Compute the decision function of X.
    
            Parameters
            ----------
            X : {array-like, sparse matrix}, shape = (n_samples, n_features)
                Multi-view input samples.
                Sparse matrix can be CSC, CSR, COO, DOK, or LIL.
                COO, DOK and LIL are converted to CSR.
    
            Returns
            -------
            dec_fun : numpy.ndarray, shape = (n_view, n_samples, k)
                Decision function of the input samples.
                The order of outputs is the same of that of the `classes_`
                attribute.
                Binary classification is a special cases with ``k == 1``,
                otherwise ``k == n_classes``. For binary classification,
                values <=0 mean classification in the first class in ``classes_``
                and values >0 mean classification in the second class in
                ``classes_``.
            """
            check_is_fitted(self, ("estimators_", "estimator_weights_alpha_","n_views_",
                                   "estimator_weights_beta_", "n_classes_", "X_"))
            X = self._global_X_transform(X, views_ind=self.X_.views_ind)
            X = self._validate_X_predict(X)
    
            n_samples = X.shape[0]
            n_estimators = len(self.estimators_)
            n_classes = self.n_classes_
            n_iterations = self.n_iterations_
            predictions = self._compute_predictions(X)
            n_views = self.n_views_
    
            dec_func = np.zeros((n_samples, n_classes))
            # update muCombo
            for ind_estimator in range(n_estimators):
                ind_iteration = ind_estimator // self.n_views_
                current_vue = ind_estimator % self.n_views_
                vector_classes = predictions[:, ind_estimator]
                dec_func[np.arange(n_samples), vector_classes] \
                    += (self.estimator_weights_alpha_[ind_iteration, current_vue, np.newaxis] * \
                       self.estimator_weights_beta_[ind_iteration, current_vue,  vector_classes])
    
            if n_classes == 2:
                dec_func[:, 0] *= -1
                return np.sum(dec_func, axis=1)
    
            return dec_func
    
        def staged_decision_function(self, X):
            """Compute decision function of X for each boosting iteration.
    
            This method allows monitoring (i.e. determine error on testing set)
            after each boosting iteration.
    
            Parameters
            ----------
            X : {array-like, sparse matrix}, shape = (n_samples, n_features)
                Multi-view input samples.
                Sparse matrix can be CSC, CSR, COO, DOK, or LIL.
                COO, DOK and LIL are converted to CSR.
    
            Returns
            -------
            dec_fun : generator of numpy.ndarrays, shape = (n_samples, k)
                Decision function of the input samples.
                The order of outputs is the same of that of the `classes_`
                attribute.
                Binary classification is a special cases with ``k == 1``,
                otherwise ``k==n_classes``. For binary classification,
                values <=0 mean classification in the first class in ``classes_``
                and values >0 mean classification in the second class in
                ``classes_``.
            """
            check_is_fitted(self, ("estimators_", "estimator_weights_alpha_","n_views_",
                                   "estimator_weights_beta_", "n_classes_"))
            X = self._global_X_transform(X, views_ind=self.X_.views_ind)
            X = self._validate_X_predict(X)
    
            n_samples = X.shape[0]
            n_stage = len(self.estimators_)
            n_classes = self.n_classes_
            n_views = self.n_views_
            predictions = self._compute_predictions(X)
    
            dec_func = np.zeros((n_samples, n_classes))
            for ind_e in range(n_stage):
                vector_classes = predictions[:, ind_e]
                current_vue = ind_e % self.n_views_
                ind_iteration = ind_e // self.n_views_
                dec_func[np.arange(n_samples), vector_classes] \
                    += (self.estimator_weights_alpha_[ind_iteration, current_vue, np.newaxis] * \
                       self.estimator_weights_beta_[ind_iteration, current_vue,  vector_classes])
                if n_classes == 2:
                    tmp_dec_func = np.array(dec_func)
                    tmp_dec_func[ :, 0] *= -1
                    yield tmp_dec_func.sum(axis=1)
    
                else:
                    yield np.array(dec_func)
    
        def predict(self, X):
            """Predict classes for X.
    
            The predicted class of an input sample is computed as the weighted mean
            prediction of the classifiers in the ensemble.
    
            Parameters
            ----------
            X : {array-like, sparse matrix}, shape = (n_samples, n_features)
                Multi-view input samples.
                Sparse matrix can be CSC, CSR, COO, DOK, or LIL.
                COO, DOK and LIL are converted to CSR.
    
            Returns
            -------
            y : numpy.ndarray, shape = (n_samples,)
                Predicted classes.
    
            Raises
            ------
            ValueError   'X' input matrix must be have the same total number of features
                         of 'X' fit data
            """
            pred = self.decision_function(X)
    
            if self.n_classes_ == 2:
                return self.classes_.take(pred > 0, axis=0)
    
            return self.classes_.take(np.argmax(pred, axis=1), axis=0)
    
        def staged_predict(self, X):
            """Return staged predictions for X.
    
            The predicted class of an input sample is computed as the weighted mean
            prediction of the classifiers in the ensemble.
    
            This generator method yields the ensemble prediction after each
            iteration of boosting and therefore allows monitoring, such as to
            determine the prediction on a test set after each boost.
    
            Parameters
            ----------
            X : {array-like, sparse matrix} of shape = (n_samples, n_features)
                Multi-view input samples.
                Sparse matrix can be CSC, CSR, COO, DOK, or LIL.
                COO, DOK and LIL are converted to CSR.
    
            Returns
            -------
            y : generator of numpy.ndarrays, shape = (n_samples,)
                Predicted classes.
            """
    
            n_classes = self.n_classes_
            classes = self.classes_
            X = self._validate_X_predict(X)
            if n_classes == 2:
                for pred in self.staged_decision_function(X):
                    yield np.array(classes.take(pred > 0, axis=0))
            else:
                for pred in self.staged_decision_function(X):
                    yield np.array(classes.take(np.argmax(pred, axis=1), axis=0))
    
        def score(self, X, y):
            """Return the mean accuracy on the given test data and labels.
    
            Parameters
            ----------
            X : {array-like, sparse matrix} of shape = (n_samples, n_features)
                Multi-view test samples.
                Sparse matrix can be CSC, CSR, COO, DOK, or LIL.
                COO, DOK and LIL are converted to CSR.
            y : array-like, shape = (n_samples,)
                True labels for X.
    
            Returns
            -------
            score : float
                Mean accuracy of self.predict(X) wrt. y.
            """
            return super(MuComboClassifier, self).score(X, y)
    
        def staged_score(self, X, y):
            """Return staged mean accuracy on the given test data and labels.
    
            This generator method yields the ensemble score after each iteration of
            boosting and therefore allows monitoring, such as to determine the
            score on a test set after each boost.
    
            Parameters
            ----------
            X : {array-like, sparse matrix} of shape = (n_samples, n_features)
                Multi-view test samples.
                Sparse matrix can be CSC, CSR, COO, DOK, or LIL.
                COO, DOK and LIL are converted to CSR.
            y : array-like, shape = (n_samples,)
                True labels for X.
    
            Returns
            -------
            score : generator of floats
                Mean accuracy of self.staged_predict(X) wrt. y.
            """
            for y_pred in self.staged_predict(X):
                yield accuracy_score(y, y_pred)