Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
RL-Parsing
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Franck Dary
RL-Parsing
Commits
b7045988
Commit
b7045988
authored
4 years ago
by
Maxime Petit
Browse files
Options
Downloads
Patches
Plain Diff
Added pos tag
parent
ead830cc
No related branches found
No related tags found
No related merge requests found
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
Config.py
+3
-3
3 additions, 3 deletions
Config.py
Decode.py
+2
-1
2 additions, 1 deletion
Decode.py
Networks.py
+70
-0
70 additions, 0 deletions
Networks.py
Train.py
+10
-9
10 additions, 9 deletions
Train.py
main.py
+14
-3
14 additions, 3 deletions
main.py
with
99 additions
and
16 deletions
Config.py
+
3
−
3
View file @
b7045988
...
...
@@ -118,11 +118,11 @@ class Config :
toPrint
=
[]
for
colIndex
in
range
(
len
(
self
.
lines
[
index
]))
:
value
=
str
(
self
.
getAsFeature
(
index
,
self
.
index2col
[
colIndex
]))
if
value
==
""
:
if
value
==
""
or
value
==
'
_
'
:
value
=
"
_
"
elif
self
.
index2col
[
colIndex
]
==
"
HEAD
"
and
value
!=
"
-1
"
:
elif
self
.
index2col
[
colIndex
]
==
"
HEAD
"
and
(
value
!=
"
-1
"
and
self
.
getAsFeature
(
index
,
"
DEPREL
"
)
!=
'
root
'
)
:
value
=
self
.
getAsFeature
(
int
(
value
),
"
ID
"
)
elif
self
.
index2col
[
colIndex
]
==
"
HEAD
"
and
value
==
"
-1
"
:
elif
self
.
index2col
[
colIndex
]
==
"
HEAD
"
and
(
value
==
"
-1
"
or
self
.
getAsFeature
(
index
,
"
DEPREL
"
)
==
'
root
'
)
:
value
=
"
0
"
toPrint
.
append
(
value
)
print
(
"
\t
"
.
join
(
toPrint
),
file
=
output
)
...
...
This diff is collapsed.
Click to expand it.
Decode.py
+
2
−
1
View file @
b7045988
...
...
@@ -77,6 +77,7 @@ def decodeModel(ts, strat, config, network, dicts, debug, rewardFunc) :
reward
=
rewarding
(
True
,
config
,
candidate
,
missingLinks
,
rewardFunc
)
moved
=
applyTransition
(
strat
,
config
,
candidate
,
reward
)
if
len
(
strat
)
>
1
:
EOS
.
apply
(
config
,
strat
)
network
.
to
(
currentDevice
)
...
...
This diff is collapsed.
Click to expand it.
Networks.py
+
70
−
0
View file @
b7045988
...
...
@@ -3,6 +3,12 @@ import torch.nn as nn
import
torch.nn.functional
as
F
import
Features
def
get_network
(
mlp
,
dicts
,
outputSize
,
incremntal
):
if
mlp
==
'
POSTagNet
'
:
return
POSTagNet
(
dicts
,
outputSize
,
incremntal
)
elif
mlp
==
'
BaseNet
'
:
return
BaseNet
(
dicts
,
outputSize
,
incremntal
)
################################################################################
class
BaseNet
(
nn
.
Module
):
def
__init__
(
self
,
dicts
,
outputSize
,
incremental
)
:
...
...
@@ -134,3 +140,67 @@ class LSTMNet(nn.Module):
return
torch
.
cat
([
colsValuesBase
,
colsValuesLSTM
,
historyValues
])
################################################################################
################################################################################
class
POSTagNet
(
nn
.
Module
):
def
__init__
(
self
,
dicts
,
outputSize
,
incremental
)
:
super
().
__init__
()
self
.
dummyParam
=
nn
.
Parameter
(
torch
.
empty
(
0
),
requires_grad
=
False
)
self
.
incremental
=
incremental
self
.
featureFunction
=
"
b.-2 b.-1 b.0 b.1 b.2
"
self
.
historyNb
=
5
self
.
suffixSize
=
4
self
.
prefixSize
=
4
self
.
columns
=
[
"
UPOS
"
,
"
FORM
"
]
self
.
embSize
=
64
self
.
nbTargets
=
len
(
self
.
featureFunction
.
split
())
self
.
inputSize
=
len
(
self
.
columns
)
*
self
.
nbTargets
+
self
.
historyNb
+
self
.
suffixSize
+
self
.
prefixSize
self
.
outputSize
=
outputSize
for
name
in
dicts
.
dicts
:
self
.
add_module
(
"
emb_
"
+
name
,
nn
.
Embedding
(
len
(
dicts
.
dicts
[
name
]),
self
.
embSize
))
self
.
fc1
=
nn
.
Linear
(
self
.
inputSize
*
self
.
embSize
,
1600
)
self
.
fc2
=
nn
.
Linear
(
1600
,
outputSize
)
self
.
dropout
=
nn
.
Dropout
(
0.3
)
self
.
apply
(
self
.
initWeights
)
def
forward
(
self
,
x
)
:
embeddings
=
[]
for
i
in
range
(
len
(
self
.
columns
))
:
embeddings
.
append
(
getattr
(
self
,
"
emb_
"
+
self
.
columns
[
i
])(
x
[...,
i
*
self
.
nbTargets
:(
i
+
1
)
*
self
.
nbTargets
]))
y
=
torch
.
cat
(
embeddings
,
-
1
).
view
(
x
.
size
(
0
),
-
1
)
curIndex
=
len
(
self
.
columns
)
*
self
.
nbTargets
if
self
.
historyNb
>
0
:
historyEmb
=
getattr
(
self
,
"
emb_HISTORY
"
)(
x
[...,
curIndex
:
curIndex
+
self
.
historyNb
]).
view
(
x
.
size
(
0
),
-
1
)
y
=
torch
.
cat
([
y
,
historyEmb
],
-
1
)
curIndex
=
curIndex
+
self
.
historyNb
if
self
.
prefixSize
>
0
:
prefixEmb
=
getattr
(
self
,
"
emb_LETTER
"
)(
x
[...,
curIndex
:
curIndex
+
self
.
prefixSize
]).
view
(
x
.
size
(
0
),
-
1
)
y
=
torch
.
cat
([
y
,
prefixEmb
],
-
1
)
curIndex
=
curIndex
+
self
.
prefixSize
if
self
.
suffixSize
>
0
:
suffixEmb
=
getattr
(
self
,
"
emb_LETTER
"
)(
x
[...,
curIndex
:
curIndex
+
self
.
suffixSize
]).
view
(
x
.
size
(
0
),
-
1
)
y
=
torch
.
cat
([
y
,
suffixEmb
],
-
1
)
curIndex
=
curIndex
+
self
.
suffixSize
y
=
self
.
dropout
(
y
)
y
=
F
.
relu
(
self
.
dropout
(
self
.
fc1
(
y
)))
y
=
self
.
fc2
(
y
)
return
y
def
currentDevice
(
self
)
:
return
self
.
dummyParam
.
device
def
initWeights
(
self
,
m
)
:
if
type
(
m
)
==
nn
.
Linear
:
torch
.
nn
.
init
.
xavier_uniform_
(
m
.
weight
)
m
.
bias
.
data
.
fill_
(
0.01
)
def
extractFeatures
(
self
,
dicts
,
config
)
:
colsValues
=
Features
.
extractColsFeatures
(
dicts
,
config
,
self
.
featureFunction
,
self
.
columns
,
self
.
incremental
)
historyValues
=
Features
.
extractHistoryFeatures
(
dicts
,
config
,
self
.
historyNb
)
prefixValues
=
Features
.
extractPrefixFeatures
(
dicts
,
config
,
self
.
prefixSize
)
suffixValues
=
Features
.
extractSuffixFeatures
(
dicts
,
config
,
self
.
suffixSize
)
return
torch
.
cat
([
colsValues
,
historyValues
,
prefixValues
,
suffixValues
])
################################################################################
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Train.py
+
10
−
9
View file @
b7045988
...
...
@@ -16,15 +16,15 @@ import Config
from
conll18_ud_eval
import
load_conllu
,
evaluate
################################################################################
def
trainMode
(
debug
,
filename
,
type
,
transitionSet
,
strategy
,
modelDir
,
nbIter
,
batchSize
,
devFile
,
bootstrapInterval
,
incremental
,
rewardFunc
,
lr
,
gamma
,
probas
,
countBreak
,
predicted
,
silent
=
False
)
:
def
trainMode
(
debug
,
filename
,
type
,
transitionSet
,
strategy
,
mlp
,
modelDir
,
nbIter
,
batchSize
,
devFile
,
bootstrapInterval
,
incremental
,
rewardFunc
,
lr
,
gamma
,
probas
,
countBreak
,
predicted
,
silent
=
False
)
:
sentences
=
Config
.
readConllu
(
filename
,
predicted
)
if
type
==
"
oracle
"
:
trainModelOracle
(
debug
,
modelDir
,
filename
,
nbIter
,
batchSize
,
devFile
,
transitionSet
,
strategy
,
sentences
,
bootstrapInterval
,
incremental
,
rewardFunc
,
lr
,
predicted
,
silent
)
trainModelOracle
(
debug
,
modelDir
,
filename
,
nbIter
,
batchSize
,
devFile
,
transitionSet
,
strategy
,
mlp
,
sentences
,
bootstrapInterval
,
incremental
,
rewardFunc
,
lr
,
predicted
,
silent
)
return
if
type
==
"
rl
"
:
trainModelRl
(
debug
,
modelDir
,
filename
,
nbIter
,
batchSize
,
devFile
,
transitionSet
,
strategy
,
sentences
,
incremental
,
rewardFunc
,
lr
,
gamma
,
probas
,
countBreak
,
predicted
,
silent
)
trainModelRl
(
debug
,
modelDir
,
filename
,
nbIter
,
batchSize
,
devFile
,
transitionSet
,
strategy
,
mlp
,
sentences
,
incremental
,
rewardFunc
,
lr
,
gamma
,
probas
,
countBreak
,
predicted
,
silent
)
return
print
(
"
ERROR : unknown type
'
%s
'"
%
type
,
file
=
sys
.
stderr
)
...
...
@@ -63,6 +63,7 @@ def extractExamples(debug, ts, strat, config, dicts, network, dynamic) :
moved
=
applyTransition
(
strat
,
config
,
candidate
,
None
)
if
len
(
strat
)
>
1
:
EOS
.
apply
(
config
,
strat
)
return
examples
...
...
@@ -94,12 +95,12 @@ def evalModelAndSave(debug, model, ts, strat, dicts, modelDir, devFile, bestLoss
################################################################################
################################################################################
def
trainModelOracle
(
debug
,
modelDir
,
filename
,
nbEpochs
,
batchSize
,
devFile
,
transitionSet
,
strategy
,
sentencesOriginal
,
bootstrapInterval
,
incremental
,
rewardFunc
,
lr
,
predicted
,
silent
=
False
)
:
def
trainModelOracle
(
debug
,
modelDir
,
filename
,
nbEpochs
,
batchSize
,
devFile
,
transitionSet
,
strategy
,
mlp
,
sentencesOriginal
,
bootstrapInterval
,
incremental
,
rewardFunc
,
lr
,
predicted
,
silent
=
False
)
:
dicts
=
Dicts
()
dicts
.
readConllu
(
filename
,
[
"
FORM
"
,
"
UPOS
"
,
"
LETTER
"
],
2
)
dicts
.
addDict
(
"
HISTORY
"
,
{
**
{
str
(
t
)
:
(
transitionSet
.
index
(
t
),
0
)
for
t
in
transitionSet
},
**
{
dicts
.
nullToken
:
(
len
(
transitionSet
),
0
)}})
dicts
.
save
(
modelDir
+
"
/dicts.json
"
)
network
=
Networks
.
BaseNet
(
dicts
,
len
(
transitionSet
),
incremental
).
to
(
getDevice
())
network
=
Networks
.
get_network
(
mlp
,
dicts
,
len
(
transitionSet
),
incremental
).
to
(
getDevice
())
examples
=
[]
sentences
=
copy
.
deepcopy
(
sentencesOriginal
)
print
(
"
%s : Starting to extract examples...
"
%
(
timeStamp
()),
file
=
sys
.
stderr
)
...
...
@@ -149,7 +150,7 @@ def trainModelOracle(debug, modelDir, filename, nbEpochs, batchSize, devFile, tr
################################################################################
################################################################################
def
trainModelRl
(
debug
,
modelDir
,
filename
,
nbIter
,
batchSize
,
devFile
,
transitionSet
,
strategy
,
sentencesOriginal
,
incremental
,
rewardFunc
,
lr
,
gamma
,
probas
,
countBreak
,
predicted
,
silent
=
False
)
:
def
trainModelRl
(
debug
,
modelDir
,
filename
,
nbIter
,
batchSize
,
devFile
,
transitionSet
,
strategy
,
mlp
,
sentencesOriginal
,
incremental
,
rewardFunc
,
lr
,
gamma
,
probas
,
countBreak
,
predicted
,
silent
=
False
)
:
memory
=
None
dicts
=
Dicts
()
...
...
@@ -157,8 +158,8 @@ def trainModelRl(debug, modelDir, filename, nbIter, batchSize, devFile, transiti
dicts
.
addDict
(
"
HISTORY
"
,
{
**
{
str
(
t
)
:
(
transitionSet
.
index
(
t
),
0
)
for
t
in
transitionSet
},
**
{
dicts
.
nullToken
:
(
len
(
transitionSet
),
0
)}})
dicts
.
save
(
modelDir
+
"
/dicts.json
"
)
policy_net
=
Networks
.
BaseNet
(
dicts
,
len
(
transitionSet
),
incremental
).
to
(
getDevice
())
target_net
=
Networks
.
BaseNet
(
dicts
,
len
(
transitionSet
),
incremental
).
to
(
getDevice
())
policy_net
=
Networks
.
get_network
(
mlp
,
dicts
,
len
(
transitionSet
),
incremental
).
to
(
getDevice
())
target_net
=
Networks
.
get_network
(
mlp
,
dicts
,
len
(
transitionSet
),
incremental
).
to
(
getDevice
())
target_net
.
load_state_dict
(
policy_net
.
state_dict
())
target_net
.
eval
()
policy_net
.
train
()
...
...
This diff is collapsed.
Click to expand it.
main.py
+
14
−
3
View file @
b7045988
...
...
@@ -51,7 +51,7 @@ if __name__ == "__main__" :
parser
.
add_argument
(
"
--silent
"
,
"
-s
"
,
default
=
False
,
action
=
"
store_true
"
,
help
=
"
Don
'
t print advancement infos.
"
)
parser
.
add_argument
(
"
--transitions
"
,
default
=
"
eager
"
,
help
=
"
Transition set to use (eager | swift | tagparser).
"
)
help
=
"
Transition set to use (eager | swift | tagparser
| tag
).
"
)
parser
.
add_argument
(
"
--ts
"
,
default
=
""
,
help
=
"
Comma separated list of supplementary transitions. Example
\"
BACK 1,BACK 2
\"
"
)
parser
.
add_argument
(
"
--reward
"
,
default
=
"
A
"
,
...
...
@@ -86,13 +86,24 @@ if __name__ == "__main__" :
tagActions
=
[
"
TAG UPOS %s
"
%
p
for
p
in
tmpDicts
.
getElementsOf
(
"
UPOS
"
)
if
"
__
"
not
in
p
and
not
isEmpty
(
p
)]
transitionSet
=
[
Transition
(
elem
)
for
elem
in
([
"
SHIFT
"
,
"
REDUCE
"
,
"
LEFT
"
,
"
RIGHT
"
]
+
tagActions
+
args
.
ts
.
split
(
'
,
'
))
if
len
(
elem
)
>
0
]
args
.
predicted
=
"
HEAD,UPOS
"
elif
args
.
transitions
==
"
tag
"
:
tmpDicts
=
Dicts
()
tmpDicts
.
readConllu
(
args
.
corpus
,
[
"
UPOS
"
],
0
)
tagActions
=
[
"
TAG UPOS %s
"
%
p
for
p
in
tmpDicts
.
getElementsOf
(
"
UPOS
"
)
if
"
__
"
not
in
p
and
not
isEmpty
(
p
)]
transitionSet
=
[
Transition
(
elem
)
for
elem
in
(
tagActions
+
args
.
ts
.
split
(
'
,
'
))
if
len
(
elem
)
>
0
]
args
.
predicted
=
"
UPOS
"
elif
args
.
transitions
==
"
swift
"
:
transitionSet
=
[
Transition
(
elem
)
for
elem
in
([
"
SHIFT
"
]
+
[
"
LEFT
"
+
str
(
n
)
for
n
in
range
(
1
,
6
)]
+
[
"
RIGHT
"
+
str
(
n
)
for
n
in
range
(
1
,
6
)]
+
args
.
ts
.
split
(
'
,
'
))
if
len
(
elem
)
>
0
]
args
.
predicted
=
"
HEAD
"
else
:
raise
Exception
(
"
Unknown transition set
'
%s
'"
%
args
.
transitions
)
if
args
.
transitions
==
"
tag
"
:
strategy
=
{
"
TAG
"
:
1
}
mlp
=
'
POSTagNet
'
else
:
strategy
=
{
"
RIGHT
"
:
1
,
"
SHIFT
"
:
1
,
"
LEFT
"
:
0
,
"
REDUCE
"
:
0
,
"
TAG
"
:
0
}
mlp
=
'
BaseNet
'
args
.
predicted
=
set
({
colName
for
colName
in
args
.
predicted
.
split
(
'
,
'
)})
...
...
@@ -101,7 +112,7 @@ if __name__ == "__main__" :
json
.
dump
(
strategy
,
open
(
args
.
model
+
"
/strategy.json
"
,
"
w
"
))
printTS
(
transitionSet
,
sys
.
stderr
)
probas
=
[
list
(
map
(
float
,
args
.
probaRandom
.
split
(
'
,
'
))),
list
(
map
(
float
,
args
.
probaOracle
.
split
(
'
,
'
)))]
Train
.
trainMode
(
args
.
debug
,
args
.
corpus
,
args
.
type
,
transitionSet
,
strategy
,
args
.
model
,
int
(
args
.
iter
),
int
(
args
.
batchSize
),
args
.
dev
,
args
.
bootstrap
,
args
.
incr
,
args
.
reward
,
float
(
args
.
lr
),
float
(
args
.
gamma
),
probas
,
int
(
args
.
countBreak
),
args
.
predicted
,
args
.
silent
)
Train
.
trainMode
(
args
.
debug
,
args
.
corpus
,
args
.
type
,
transitionSet
,
strategy
,
mlp
,
args
.
model
,
int
(
args
.
iter
),
int
(
args
.
batchSize
),
args
.
dev
,
args
.
bootstrap
,
args
.
incr
,
args
.
reward
,
float
(
args
.
lr
),
float
(
args
.
gamma
),
probas
,
int
(
args
.
countBreak
),
args
.
predicted
,
args
.
silent
)
elif
args
.
mode
==
"
decode
"
:
transNames
=
json
.
load
(
open
(
args
.
model
+
"
/transitions.json
"
,
"
r
"
))
transitionSet
=
[
Transition
(
elem
)
for
elem
in
transNames
]
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment