Skip to content
Snippets Groups Projects
conll18_ud_eval.py 34.6 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
#!/usr/bin/env python3

# Compatible with Python 2.7 and 3.2+, can be used either as a module
# or a standalone executable.
#
# Copyright 2017, 2018 Institute of Formal and Applied Linguistics (UFAL),
# Faculty of Mathematics and Physics, Charles University, Czech Republic.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
# Authors: Milan Straka, Martin Popel <surname@ufal.mff.cuni.cz>
#
# Changelog:
# - [12 Apr 2018] Version 0.9: Initial release.
# - [19 Apr 2018] Version 1.0: Fix bug in MLAS (duplicate entries in functional_children).
#                              Add --counts option.
# - [02 May 2018] Version 1.1: When removing spaces to match gold and system characters,
#                              consider all Unicode characters of category Zs instead of
#                              just ASCII space.
# - [25 Jun 2018] Version 1.2: Use python3 in the she-bang (instead of python).
#                              In Python2, make the whole computation use `unicode` strings.
#
# Updated by Franck Dary for Macaon

# Command line usage
# ------------------
# conll18_ud_eval.py gold_conllu_file system_conllu_file
#
#   Metrics printed (as precision, recall, F1 score,
#   and in case the metric is computed on aligned words also accuracy on these):
#   - Tokens: how well do the gold tokens match system tokens
#   - Sentences: how well do the gold sentences match system sentences
#   - Words: how well can the gold words be aligned to system words
#   - UPOS: using aligned words, how well does UPOS match
#   - XPOS: using aligned words, how well does XPOS match
#   - UFeats: using aligned words, how well does universal FEATS match
#   - AllTags: using aligned words, how well does UPOS+XPOS+FEATS match
#   - Lemmas: using aligned words, how well does LEMMA match
#   - UAS: using aligned words, how well does HEAD match
#   - LAS: using aligned words, how well does HEAD+DEPREL(ignoring subtypes) match
#   - CLAS: using aligned words with content DEPREL, how well does
#       HEAD+DEPREL(ignoring subtypes) match
#   - MLAS: using aligned words with content DEPREL, how well does
#       HEAD+DEPREL(ignoring subtypes)+UPOS+UFEATS+FunctionalChildren(DEPREL+UPOS+UFEATS) match
#   - BLEX: using aligned words with content DEPREL, how well does
#       HEAD+DEPREL(ignoring subtypes)+LEMMAS match
# - if -c is given, raw counts of correct/gold_total/system_total/aligned words are printed
#   instead of precision/recall/F1/AlignedAccuracy for all metrics.

# API usage
# ---------
# - load_conllu(file)
#   - loads CoNLL-U file from given file object to an internal representation
#   - the file object should return str in both Python 2 and Python 3
#   - raises UDError exception if the given file cannot be loaded
# - evaluate(gold_ud, system_ud)
#   - evaluate the given gold and system CoNLL-U files (loaded with load_conllu)
#   - raises UDError if the concatenated tokens of gold and system file do not match
#   - returns a dictionary with the metrics described above, each metric having
#     three fields: precision, recall and f1

# Description of token matching
# -----------------------------
# In order to match tokens of gold file and system file, we consider the text
# resulting from concatenation of gold tokens and text resulting from
# concatenation of system tokens. These texts should match -- if they do not,
# the evaluation fails.
#
# If the texts do match, every token is represented as a range in this original
# text, and tokens are equal only if their range is the same.

# Description of word matching
# ----------------------------
# When matching words of gold file and system file, we first match the tokens.
# The words which are also tokens are matched as tokens, but words in multi-word
# tokens have to be handled differently.
#
# To handle multi-word tokens, we start by finding "multi-word spans".
# Multi-word span is a span in the original text such that
# - it contains at least one multi-word token
# - all multi-word tokens in the span (considering both gold and system ones)
#   are completely inside the span (i.e., they do not "stick out")
# - the multi-word span is as small as possible
#
# For every multi-word span, we align the gold and system words completely
# inside this span using LCS on their FORMs. The words not intersecting
# (even partially) any multi-word span are then aligned as tokens.


from __future__ import division
from __future__ import print_function

from readMCD import readMCD

import argparse
import io
import os
import sys
import unicodedata
import unittest
import math

# CoNLL-U column names
col2index = {}
index2col = {}

metric2colname = {
  "UPOS" : "UPOS",
  "Lemmas" : "LEMMA",
}

defaultColumns = {
"ID",
"FORM",
"UPOS",
"XPOS",
"LEMMA",
"FEATS",
"HEAD",
"DEPREL",
"DEPS",
"MISC",
}

# Content and functional relations
CONTENT_DEPRELS = {
  "nsubj", "obj", "iobj", "csubj", "ccomp", "xcomp", "obl", "vocative",
  "expl", "dislocated", "advcl", "advmod", "discourse", "nmod", "appos",
  "nummod", "acl", "amod", "conj", "fixed", "flat", "compound", "list",
  "parataxis", "orphan", "goeswith", "reparandum", "root", "dep"
}

FUNCTIONAL_DEPRELS = {
  "aux", "cop", "mark", "det", "clf", "case", "cc"
}

UNIVERSAL_FEATURES = {
  "PronType", "NumType", "Poss", "Reflex", "Foreign", "Abbr", "Gender",
  "Animacy", "Number", "Case", "Definite", "Degree", "VerbForm", "Mood",
  "Tense", "Aspect", "Voice", "Evident", "Polarity", "Person", "Polite"
}

################################################################################
def is_float(value) :
  if not isinstance(value, str) :
    return False
  try :
    float(value)
    return True
  except ValueError :
    return False
################################################################################

################################################################################
def filter_columns(columns) :
  res = []
  cols = [("ID",4), ("FORM",8), ("UPOS",8), ("HEAD",4), ("DEPREL", 8)]
  contents = [(columns[col2index[col]], max_size) for (col, max_size) in cols if col in col2index]

  for (content, max_len) in contents :
    res.append(("{:"+str(max_len)+"}").format(content if len(content) <= max_len else "{}…{}".format(content[0:math.ceil((max_len-1)/2)],content[-((max_len-1)//2):])))

  return res
################################################################################

################################################################################
# UD Error is used when raising exceptions in this module
class UDError(Exception) :
  pass
################################################################################

################################################################################
# Conversion methods handling `str` <-> `unicode` conversions in Python2
def _decode(text) :
  return text if sys.version_info[0] >= 3 or not isinstance(text, str) else text.decode("utf-8")
################################################################################


################################################################################
def _encode(text) :
  return text if sys.version_info[0] >= 3 or not isinstance(text, unicode) else text.encode("utf-8")
################################################################################


################################################################################
# Load given CoNLL-U file into internal representation
def load_conllu(file) :
  global col2index
  global index2col
  # Internal representation classes
  class UDRepresentation :
    def __init__(self) :
      # Characters of all the tokens in the whole file.
      # Whitespace between tokens is not included.
      self.characters = []
      # List of UDSpan instances with start&end indices into `characters`.
      self.tokens = []
      # List of UDWord instances.
      self.words = []
      # List of UDSpan instances with start&end indices into `characters`.
      self.sentences = []
      # List of UDSpan instances with start&end indices into `words`.
      self.sentences_words = []
      # Name of the file this representation has been extracted from.
      self.filename = ""
  class UDSpan :
    def __init__(self, start, end) :
      self.start = start
      # Note that self.end marks the first position **after the end** of span,
      # so we can use characters[start:end] or range(start, end).
      self.end = end
  class UDWord :
    def __init__(self, span, columns, is_multiword) :
      # Index of the sentence this word is part of, within ud_representation.sentences.
      self.sentence = None
      # Span of this word (or MWT, see below) within ud_representation.characters.
      self.span = span
      # 10 columns of the CoNLL-U file: ID, FORM, LEMMA,...
      self.columns = columns
      # is_multiword==True means that this word is part of a multi-word token.
      # In that case, self.span marks the span of the whole multi-word token.
      self.is_multiword = is_multiword
      # Reference to the UDWord instance representing the HEAD (or None if root).
      self.parent = None
      # List of references to UDWord instances representing functional-deprel children.
      self.functional_children = []

      # Only consider universal FEATS.
      # TODO consider all feats
      if "FEATS" in col2index :
        self.columns[col2index["FEATS"]] = "|".join(sorted(feat for feat in columns[col2index["FEATS"]].split("|")
                           if feat.split("=", 1)[0] in UNIVERSAL_FEATURES))
      if "DEPREL" in col2index :
        # Let's ignore language-specific deprel subtypes.
        self.columns[col2index["DEPREL"]] = columns[col2index["DEPREL"]].split(":")[0]
        # Precompute which deprels are CONTENT_DEPRELS and which FUNCTIONAL_DEPRELS
        self.is_content_deprel = self.columns[col2index["DEPREL"]] in CONTENT_DEPRELS
        self.is_functional_deprel = self.columns[col2index["DEPREL"]] in FUNCTIONAL_DEPRELS

  ud = UDRepresentation()
  ud.filename = file.name

  # Load the CoNLL-U file
  index, sentence_start = 0, None
  id_starts_at_zero = False
  while True :
    line = file.readline()
    if not line :
      break
    line = _decode(line.rstrip("\r\n"))

    # Handle sentence start boundaries
    if sentence_start is None :
      # Skip comments
      if line.startswith("#") :
        splited = line.split("global.columns =")
        if len(splited) > 1 :
          col2index, index2col = readMCD(splited[-1].strip())
        continue
      # Start a new sentence
      sentence_start = len(ud.words)
      ud.sentences.append(UDSpan(index, 0))
      ud.sentences_words.append(UDSpan(sentence_start, 0))

    if not line :
      # Add parent and children UDWord links and check there are no cycles
      def process_word(word) :
        if "HEAD" in col2index :
          if word.parent == "remapping" :
            raise UDError("There is a cycle in a sentence")
          if word.parent is None :
            head = int(word.columns[col2index["HEAD"]])
            if head < 0 or head > len(ud.words) - sentence_start :
              raise UDError("HEAD '{}' points outside of the sentence".format(_encode(word.columns[col2index["HEAD"]])))
            if head :
              parent = ud.words[sentence_start + head - 1]
              word.parent = "remapping"
              process_word(parent)
              word.parent = parent

      for word in ud.words[sentence_start:] :
        process_word(word)
      # func_children cannot be assigned within process_word
      # because it is called recursively and may result in adding one child twice.
      for word in ud.words[sentence_start:] :
        if "HEAD" in col2index and word.parent and word.is_functional_deprel :
          word.parent.functional_children.append(word)

      # Check there is a single root node
      if "HEAD" in col2index and len([word for word in ud.words[sentence_start:] if word.parent is None]) != 1 :
        raise UDError("There are multiple roots in a sentence")

      # End the sentence
      ud.sentences[-1].end = index
      ud.sentences_words[-1].end = len(ud.words)
      sentence_start = None
      continue

    # Read next token/word
    columns = line.split("\t")

    # Skip empty nodes
    if "ID" in col2index and "." in columns[col2index["ID"]] :
      continue

    # Delete spaces from FORM, so gold.characters == system.characters
    # even if one of them tokenizes the space. Use any Unicode character
    # with category Zs.
    if "FORM" in col2index :
      columns[col2index["FORM"]] = "".join(filter(lambda c: unicodedata.category(c) != "Zs", columns[col2index["FORM"]]))
      if not columns[col2index["FORM"]] :
        raise UDError("There is an empty FORM in the CoNLL-U file")

    # Save token
    form_value = columns[col2index["FORM"]] if "FORM" in col2index else "_"
    ud.characters.extend(form_value)
    ud.tokens.append(UDSpan(index, index + len(form_value)))
    index += len(form_value)

    # Handle multi-word tokens to save word(s)
    if "ID" in col2index and "-" in columns[col2index["ID"]] :
      try :
        start, end = map(int, columns[col2index["ID"]].split("-"))
      except :
        raise UDError("Cannot parse multi-word token ID '{}'".format(_encode(columns[col2index["ID"]])))

      for _ in range(start, end + 1) :
        word_line = _decode(file.readline().rstrip("\r\n"))
        word_columns = word_line.split("\t")

        ud.words.append(UDWord(ud.tokens[-1], word_columns, is_multiword=True))
        ud.words[-1].sentence = len(ud.sentences)-1
    # Basic tokens/words
    else :
      try :
        word_id = int(columns[col2index["ID"]]) if "ID" in col2index else "_"
        if word_id == 0 :
          id_starts_at_zero = True
      except :
        raise UDError("Cannot parse word ID '{}'".format(_encode(columns[col2index["ID"]])))
      if word_id != len(ud.words) - sentence_start + (0 if id_starts_at_zero else 1) :
        raise UDError("Incorrect word ID '{}' for word '{}', expected '{}'".format(
          _encode(columns[col2index["ID"]]), _encode(columns[col2index["FORM"]]), len(ud.words) - sentence_start + 1))

      try :
        head_id = int(columns[col2index["HEAD"]]) if "HEAD" in col2index else 0
      except :
        raise UDError("Cannot parse HEAD '{}'".format(_encode(columns[col2index["HEAD"]])))
      if head_id < 0 :
        raise UDError("HEAD cannot be negative")

      ud.words.append(UDWord(ud.tokens[-1], columns, is_multiword=False))
      ud.words[-1].sentence = len(ud.sentences)-1

  if sentence_start is not None :
    raise UDError("The CoNLL-U file does not end with empty line")

  return ud
################################################################################


################################################################################
# Evaluate the gold and system treebanks (loaded using load_conllu).
def evaluate(gold_ud, system_ud, extraColumns) :
  class Score :
    def __init__(self, gold_total, system_total, correct, aligned_total=None, isNumeric=False, R2=None) :
      self.correct = correct[0]
      self.gold_total = gold_total
      self.system_total = system_total
      self.aligned_total = aligned_total
      if isNumeric :
        self.precision = 0
        self.recall = R2
        self.f1 = correct[1]
        self.aligned_accuracy = correct[0]

      else :
        self.precision = 100*correct[0] / system_total if system_total else 0.0
        self.recall = 100*correct[0] / gold_total if gold_total else 0.0
        self.f1 = 2 * 100*correct[0] / (system_total + gold_total) if system_total + gold_total else 0.0
        self.aligned_accuracy = 100*correct[0] / aligned_total if aligned_total else aligned_total

  class AlignmentWord :
    def __init__(self, gold_word, system_word) :
      self.gold_word = gold_word
      self.system_word = system_word
  class Alignment :
    def __init__(self, gold_words, system_words) :
      self.gold_words = gold_words
      self.system_words = system_words
      self.matched_words = []
      self.matched_words_map = {}
    def append_aligned_words(self, gold_word, system_word) :
      self.matched_words.append(AlignmentWord(gold_word, system_word))
      self.matched_words_map[system_word] = gold_word

  def spans_score(gold_spans, system_spans) :
    correct, gi, si = 0, 0, 0
    while gi < len(gold_spans) and si < len(system_spans) :
      if system_spans[si].start < gold_spans[gi].start :
        si += 1
      elif gold_spans[gi].start < system_spans[si].start :
        gi += 1
      else :
        correct += gold_spans[gi].end == system_spans[si].end
        si += 1
        gi += 1

    return [Score(len(gold_spans), len(system_spans), [correct])]

  def alignment_score(alignment, key_fn=None, filter_fn=None) :
    if filter_fn is not None :
      gold = sum(1 for gold in alignment.gold_words if filter_fn(gold))
      system = sum(1 for system in alignment.system_words if filter_fn(system))
      aligned = sum(1 for word in alignment.matched_words if filter_fn(word.gold_word))
    else :
      gold = len(alignment.gold_words)
      system = len(alignment.system_words)
      aligned = len(alignment.matched_words)

    if key_fn is None :
      # Return score for whole aligned words
      return [Score(gold, system, [aligned])]

    def gold_aligned_gold(word) :
      return word
    def gold_aligned_system(word) :
      return alignment.matched_words_map.get(word, "NotAligned") if word is not None else None
    isNumericOnly = True
    for words in alignment.matched_words :
      if filter_fn is None or filter_fn(words.gold_word) :
        goldItem = key_fn(words.gold_word, gold_aligned_gold)
        systemItem = key_fn(words.system_word, gold_aligned_system)
        if (not is_float(systemItem)) or  (not is_float(goldItem)) :
          isNumericOnly = False
          break

    correct = [0,0]
    errors = []
    goldValues = []
    predictedValues = []
    for words in alignment.matched_words :
      if filter_fn is None or filter_fn(words.gold_word) :
        goldItem = key_fn(words.gold_word, gold_aligned_gold)
        systemItem = key_fn(words.system_word, gold_aligned_system)
        if not isNumericOnly :
          if goldItem == systemItem :
            correct[0] += 1
          else :
            errors.append(words)
        else :
          correct[0] -= abs(float(goldItem) - float(systemItem))**1
          correct[1] -= abs(float(goldItem) - float(systemItem))**2
          goldValues.append(float(goldItem))
          predictedValues.append(float(systemItem))

    R2 = 0.0
    if isNumericOnly and len(goldValues) > 0 :
      correct[0] /= len(goldValues)
      correct[1] /= len(goldValues)
      goldMean = sum(goldValues) / len(goldValues)
      predMean = sum(predictedValues) / len(predictedValues)
      numerator = 0.0
      denom1 = 0.0
      denom2 = 0.0
      for i in range(len(predictedValues)) :
        numerator += (predictedValues[i]-predMean)*(goldValues[i]-goldMean)
        denom1 += (predictedValues[i]-predMean)**2
        denom2 += (goldValues[i]-goldMean)**2
        
      pearson = 0.0
      if denom1 > 0.0 and denom2 > 0.0 :
        pearson = numerator/((denom1**0.5)*(denom2**0.5))
      R2 = pearson**2
    return [Score(gold, system, correct, aligned, isNumeric=isNumericOnly, R2=R2), errors]

  def beyond_end(words, i, multiword_span_end) :
    if i >= len(words) :
      return True
    if words[i].is_multiword :
      return words[i].span.start >= multiword_span_end
    return words[i].span.end > multiword_span_end

  def extend_end(word, multiword_span_end) :
    if word.is_multiword and word.span.end > multiword_span_end :
      return word.span.end
    return multiword_span_end

  def find_multiword_span(gold_words, system_words, gi, si) :
    # We know gold_words[gi].is_multiword or system_words[si].is_multiword.
    # Find the start of the multiword span (gs, ss), so the multiword span is minimal.
    # Initialize multiword_span_end characters index.
    if gold_words[gi].is_multiword :
      multiword_span_end = gold_words[gi].span.end
      if not system_words[si].is_multiword and system_words[si].span.start < gold_words[gi].span.start :
        si += 1
    else : # if system_words[si].is_multiword
      multiword_span_end = system_words[si].span.end
      if not gold_words[gi].is_multiword and gold_words[gi].span.start < system_words[si].span.start :
        gi += 1
    gs, ss = gi, si

    # Find the end of the multiword span
    # (so both gi and si are pointing to the word following the multiword span end).
    while not beyond_end(gold_words, gi, multiword_span_end) or \
        not beyond_end(system_words, si, multiword_span_end) :
      if gi < len(gold_words) and (si >= len(system_words) or
                     gold_words[gi].span.start <= system_words[si].span.start) :
        multiword_span_end = extend_end(gold_words[gi], multiword_span_end)
        gi += 1
      else :
        multiword_span_end = extend_end(system_words[si], multiword_span_end)
        si += 1
    return gs, ss, gi, si

  def compute_lcs(gold_words, system_words, gi, si, gs, ss) :
    lcs = [[0] * (si - ss) for i in range(gi - gs)]
    for g in reversed(range(gi - gs)) :
      for s in reversed(range(si - ss)) :
        if gold_words[gs + g].columns[col2index["FORM"]].lower() == system_words[ss + s].columns[col2index["FORM"]].lower() :
          lcs[g][s] = 1 + (lcs[g+1][s+1] if g+1 < gi-gs and s+1 < si-ss else 0)
        lcs[g][s] = max(lcs[g][s], lcs[g+1][s] if g+1 < gi-gs else 0)
        lcs[g][s] = max(lcs[g][s], lcs[g][s+1] if s+1 < si-ss else 0)
    return lcs

  def align_words(gold_words, system_words) :
    alignment = Alignment(gold_words, system_words)

    gi, si = 0, 0
    while gi < len(gold_words) and si < len(system_words) :
      if gold_words[gi].is_multiword or system_words[si].is_multiword :
        # A: Multi-word tokens => align via LCS within the whole "multiword span".
        gs, ss, gi, si = find_multiword_span(gold_words, system_words, gi, si)

        if si > ss and gi > gs :
          lcs = compute_lcs(gold_words, system_words, gi, si, gs, ss)

          # Store aligned words
          s, g = 0, 0
          while g < gi - gs and s < si - ss :
            if gold_words[gs + g].columns[col2index["FORM"]].lower() == system_words[ss + s].columns[col2index["FORM"]].lower() :
              alignment.append_aligned_words(gold_words[gs+g], system_words[ss+s])
              g += 1
              s += 1
            elif lcs[g][s] == (lcs[g+1][s] if g+1 < gi-gs else 0) :
              g += 1
            else :
              s += 1
      else :
        # B: No multi-word token => align according to spans.
        if (gold_words[gi].span.start, gold_words[gi].span.end) == (system_words[si].span.start, system_words[si].span.end) :
          alignment.append_aligned_words(gold_words[gi], system_words[si])
          gi += 1
          si += 1
        elif gold_words[gi].span.start <= system_words[si].span.start :
          gi += 1
        else :
          si += 1

    return alignment

  # Check that the underlying character sequences do match.
  if gold_ud.characters != system_ud.characters :
    index = 0
    while index < len(gold_ud.characters) and index < len(system_ud.characters) and \
        gold_ud.characters[index] == system_ud.characters[index] :
      index += 1

    raise UDError(
      "The concatenation of tokens in gold file and in system file differ!\n" +
      "First 20 differing characters in gold file: '{}' and system file: '{}'".format(
        "".join(map(_encode, gold_ud.characters[index:index + 20])),
        "".join(map(_encode, system_ud.characters[index:index + 20]))
      )
    )

  # Align words
  alignment = align_words(gold_ud.words, system_ud.words)

  # Compute the F1-scores
  result = {}
  if "FORM" in col2index :
    result["Tokens"] = spans_score(gold_ud.tokens, system_ud.tokens)
    result["Words"] = alignment_score(alignment)
  if "UPOS" in col2index :
    result["UPOS"] = alignment_score(alignment, lambda w, _ : w.columns[col2index["UPOS"]])
  if "XPOS" in col2index :
    result["XPOS"] = alignment_score(alignment, lambda w, _ : w.columns[col2index["XPOS"]])
  if "FEATS" in col2index :
    result["UFeats"] = alignment_score(alignment, lambda w, _ : w.columns[col2index["FEATS"]])
  if "LEMMA" in col2index :
    result["Lemmas"] = alignment_score(alignment, lambda w, ga : w.columns[col2index["LEMMA"]] if ga(w).columns[col2index["LEMMA"]] != "_" else "_")
  if "HEAD" in col2index :
    result["UAS"] = alignment_score(alignment, lambda w, ga : ga(w.parent))
  if "DEPREL" in col2index :
    result["LAS"] = alignment_score(alignment, lambda w, ga : (ga(w.parent), w.columns[col2index["DEPREL"]]))
  if "DEPREL" in col2index and "UPOS" in col2index and "FEATS" in col2index :
    result["MLAS"] = alignment_score(alignment, lambda w, ga: (ga(w.parent), w.columns[col2index["DEPREL"]], w.columns[col2index["UPOS"]], w.columns[col2index["FEATS"]], [(ga(c), c.columns[col2index["DEPREL"]], c.columns[col2index["UPOS"]], c.columns[col2index["FEATS"]]) for c in w.functional_children]), filter_fn=lambda w: w.is_content_deprel)
  if "ID" in col2index :
    result["Sentences"] = spans_score(gold_ud.sentences, system_ud.sentences)

  for colName in col2index :
    if colName in extraColumns and colName != "_" :
      result[colName] = alignment_score(alignment, lambda w, _ : w.columns[col2index[colName]])

  return result
################################################################################


################################################################################
def load_conllu_file(path) :
  _file = open(path, mode="r", **({"encoding" : "utf-8"} if sys.version_info >= (3, 0) else {}))
  return load_conllu(_file)
################################################################################


################################################################################
def evaluate_wrapper(args) :
  # Load CoNLL-U files
  gold_ud = load_conllu_file(args.gold_file)
  system_files = [load_conllu_file(args.system_file)]

  if args.system_file2 is not None :
    system_files.append(load_conllu_file(args.system_file2))

  return gold_ud, [(system, evaluate(gold_ud, system, set(args.extra.split(',')))) for system in system_files]
################################################################################


################################################################################
class Error :
  def __init__(self, gold_file, system_file, gold_word, system_word, metric) :
    self.gold = gold_word
    self.pred = system_word
    self.gold_sentence = gold_file.words[gold_file.sentences_words[self.gold.sentence].start:gold_file.sentences_words[self.gold.sentence].end]
    self.pred_sentence = system_file.words[system_file.sentences_words[self.pred.sentence].start:system_file.sentences_words[self.pred.sentence].end]
    self.type = self.gold.columns[col2index[metric2colname[metric]]]+"->"+self.pred.columns[col2index[metric2colname[metric]]]
  def __str__(self) :
    result = []
    gold_lines = []
    pred_lines = []
    for word in self.gold_sentence :
      gold_lines.append((">" if word == self.gold else " ") + " ".join(filter_columns(word.columns)))
    for word in self.pred_sentence :
      pred_lines.append((">" if word == self.pred else " ") + " ".join(filter_columns(word.columns)))
         
    for index in range(max(len(gold_lines), len(pred_lines))) :
      result.append("{} | {}".format(gold_lines[index] if index < len(gold_lines) else " "*len(pred_lines[index]), pred_lines[index] if index < len(pred_lines) else " "*len(gold_lines[index])))
    return "\n".join(result)

class Errors :
  def __init__(self, metric, errors1=None, errors2=None) :
    self.types = []
    self.nb_errors = 0
    self.metric = metric
    if errors1 is not None and errors2 is not None :
      for type in errors1.types :
        for error in type.errors :
          if not errors2.has(error) :
            self.add(error)
  def __len__(self) : 
    return self.nb_errors
  def add(self, error) :
    self.nb_errors += 1
    for t in self.types :
      if t.type == error.type :
        t.add(error)
        return
    self.types.append(ErrorType(error.type))
    self.types[-1].add(error)
  def has(self, error) :
    for t in self.types :
      if t.type == error.type :
        return t.has(error)
  def sort(self) :
    self.types.sort(key=len, reverse=True)

class ErrorType :
  def __init__(self, error_type) :
    self.type = error_type
    self.errors = []
  def __len__(self) :
    return len(self.errors)
  def add(self, error) :
    self.errors.append(error)
  def has(self, error) :
    for other_error in self.errors :
      if other_error.gold == error.gold :
        return True
    return False
################################################################################


################################################################################
def compute_errors(gold_file, system_file, evaluation, metric) :
  errors = Errors(metric)
  for alignment_word in evaluation[metric][1] :
    gold = alignment_word.gold_word
    pred = alignment_word.system_word
    error = Error(gold_file, system_file, gold, pred, metric)

    errors.add(error)

  return errors
################################################################################


################################################################################
def main() :
  # Parse arguments
  parser = argparse.ArgumentParser()
  parser.add_argument("gold_file", type=str,
    help="Name of the CoNLL-U file with the gold data.")
  parser.add_argument("system_file", type=str,
    help="Name of the CoNLL-U file with the predicted data.")
  parser.add_argument("--counts", "-c", default=False, action="store_true",
    help="Print raw counts of correct/gold/system/aligned words instead of prec/rec/F1 for all metrics.")
  parser.add_argument("--system_file2",
    help="Name of another CoNLL-U file with predicted data, for error comparison.")
  parser.add_argument("--enumerate_errors", "-e", default=None,
    help="Comma separated list of column names for which to enumerate errors (e.g. \"UPOS,FEATS\").")
  parser.add_argument("--extra", "-x", default="",
    help="Comma separated list of column names for which to compute score (e.g. \"TIME,EOS\").")
  args = parser.parse_args()

  errors_metrics = [] if args.enumerate_errors is None else args.enumerate_errors.split(',')

  global col2index
  global index2col
  col2index, index2col = readMCD("ID FORM LEMMA UPOS XPOS FEATS HEAD DEPREL DEPS MISC")

  # Evaluate
  gold_ud, evaluations = evaluate_wrapper(args)
  errors_by_file = []
  examples_list = []

  for id1 in range(len(evaluations)) :
    (system_ud, evaluation) = evaluations[id1]
    fnamelen = len(system_ud.filename)
    print("*"*math.ceil((80-2-fnamelen)/2),system_ud.filename,"*"*math.floor((80-2-fnamelen)/2))
    # Compute errors
    errors_list = [compute_errors(gold_ud, system_ud, evaluation, metric) for metric in errors_metrics]
    errors_by_file.append(errors_list)

    maxColNameSize = 1 + max([len(colName) for colName in evaluation])
  
    # Print the evaluation
    if args.counts :
      print("{:^{}}| Correct   |      Gold | Predicted | Aligned".format("Metric", maxColNameSize))
    else :
      print("{:^{}}| Precision |    Recall |  F1 Score | AligndAcc".format("Metric", maxColNameSize))
    print("{}+-----------+-----------+-----------+-----------".format("-"*maxColNameSize))
    for metric in evaluation :
      if args.counts :
        print("{:{}}|{:10} |{:10} |{:10} |{:10}".format(
          metric,
          maxColNameSize,
          evaluation[metric][0].correct,
          evaluation[metric][0].gold_total,
          evaluation[metric][0].system_total,
          evaluation[metric][0].aligned_total or (evaluation[metric][0].correct if metric == "Words" else "")
        ))
      else :
        precision = ("{:10.2f}" if abs(evaluation[metric][0].precision) > 1.0 else "{:10.4f}").format(evaluation[metric][0].precision)
        recall = ("{:10.2f}" if abs(evaluation[metric][0].recall) > 1.0 else "{:10.4f}").format(evaluation[metric][0].recall)
        f1 = ("{:10.2f}" if abs(evaluation[metric][0].f1) > 1.0 else "{:10.4f}").format(evaluation[metric][0].f1)
        print("{:{}}|{} |{} |{} |{}".format(
          metric,
          maxColNameSize,
          precision,
          recall,
          f1,
          "{:10.2f}".format(evaluation[metric][0].aligned_accuracy) if evaluation[metric][0].aligned_accuracy is not None else ""
        ))
  
    for id2 in range(len(errors_list)) :
      errors = errors_list[id2]
      errors.sort()
      print("Most frequent errors for metric '{}' :".format(errors.metric))
      print("{:>12} {:>5} {:>6} {}\n {:->37}".format("ID", "NB", "%AGE", "GOLD->SYSTEM", ""))

      print("{:>12} {:5} {:6.2f}%".format("Total", len(errors), 100))
      for id3 in range(len(errors.types[:10])) :
        error_type = errors.types[:10][id3]
        t = error_type.type
        nb = len(error_type)
        percent = 100.0*nb/len(errors)
        id = ":".join(map(str,[id1,id2,id3,"*"]))
        print("{:>12} {:5} {:6.2f}% {}".format(id, nb, percent, t))
        for id4 in range(len(error_type)) :
          examples_list.append((":".join(map(str,[id1,id2,id3,id4])), error_type.errors[id4]))
      print("")

  for id1 in range(len(evaluations)) :
    (system1_ud, evaluation) = evaluations[id1]
    for id2 in range(len(evaluations)) :
      if id1 == id2 :
        continue
      (system2_ud, evaluation) = evaluations[id2]
      errors1 = errors_by_file[id1]
      errors2 = errors_by_file[id2]

      if len(errors1) > 0 :
        print("{} Error comparison {}".format("*"*31, "*"*31))
        print("{:>30} : {}".format("These errors are present in", system1_ud.filename))
        print("{:>30} : {}".format("and not in", system2_ud.filename))
      for id3 in range(len(errors1)) :
        metric = errors1[id3].metric
        errors_diff = Errors(metric, errors1[id3], errors2[id3])
        errors_diff.sort()
        print("{:>12} {:5} {:6.2f}%".format("Total", len(errors_diff), 100))
        for id4 in range(len(errors_diff.types[:10])) :
          error_type = errors_diff.types[:10][id4]
          t = error_type.type
          nb = len(error_type)
          percent = 100.0*nb/len(errors)
          id = ":".join(map(str,["d"+str(id1),id3,id4,"*"]))
          print("{:>12} {:5} {:6.2f}% {}".format(id, nb, percent, t))
          for id5 in range(len(error_type)) :
            examples_list.append((":".join(map(str,["d"+str(id1),id3,id4,id5])), error_type.errors[id5]))
        print("")

  if len(examples_list) > 0 :
    print("{}List of all errors by their ID{}".format("*"*25,"*"*25))
    print("{}{:^30}{}\n".format("*"*25,"Format is GOLD | PREDICTED","*"*25))

  for (id,error) in examples_list :
    print("ID="+id)
    print(error)
    print("")
################################################################################


################################################################################
if __name__ == "__main__" :
  main()
################################################################################