Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
macaon
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Franck Dary
macaon
Commits
a0af9039
Commit
a0af9039
authored
5 years ago
by
Franck Dary
Browse files
Options
Downloads
Patches
Plain Diff
Added LSTMNetwork
parent
9b517e71
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
reading_machine/src/Classifier.cpp
+23
-0
23 additions, 0 deletions
reading_machine/src/Classifier.cpp
torch_modules/include/LSTMNetwork.hpp
+38
-0
38 additions, 0 deletions
torch_modules/include/LSTMNetwork.hpp
torch_modules/src/LSTMNetwork.cpp
+221
-0
221 additions, 0 deletions
torch_modules/src/LSTMNetwork.cpp
with
282 additions
and
0 deletions
reading_machine/src/Classifier.cpp
+
23
−
0
View file @
a0af9039
...
@@ -4,6 +4,7 @@
...
@@ -4,6 +4,7 @@
#include
"ConcatWordsNetwork.hpp"
#include
"ConcatWordsNetwork.hpp"
#include
"RLTNetwork.hpp"
#include
"RLTNetwork.hpp"
#include
"CNNNetwork.hpp"
#include
"CNNNetwork.hpp"
#include
"LSTMNetwork.hpp"
Classifier
::
Classifier
(
const
std
::
string
&
name
,
const
std
::
string
&
topology
,
const
std
::
string
&
tsFile
)
Classifier
::
Classifier
(
const
std
::
string
&
name
,
const
std
::
string
&
topology
,
const
std
::
string
&
tsFile
)
{
{
...
@@ -69,6 +70,28 @@ void Classifier::initNeuralNetwork(const std::string & topology)
...
@@ -69,6 +70,28 @@ void Classifier::initNeuralNetwork(const std::string & topology)
this
->
nn
.
reset
(
new
CNNNetworkImpl
(
this
->
transitionSet
->
size
(),
std
::
stoi
(
sm
[
1
]),
std
::
stoi
(
sm
[
2
]),
std
::
stoi
(
sm
[
3
]),
std
::
stoi
(
sm
[
4
]),
columns
,
focusedBuffer
,
focusedStack
,
focusedColumns
,
maxNbElements
,
std
::
stoi
(
sm
[
10
]),
std
::
stoi
(
sm
[
11
])));
this
->
nn
.
reset
(
new
CNNNetworkImpl
(
this
->
transitionSet
->
size
(),
std
::
stoi
(
sm
[
1
]),
std
::
stoi
(
sm
[
2
]),
std
::
stoi
(
sm
[
3
]),
std
::
stoi
(
sm
[
4
]),
columns
,
focusedBuffer
,
focusedStack
,
focusedColumns
,
maxNbElements
,
std
::
stoi
(
sm
[
10
]),
std
::
stoi
(
sm
[
11
])));
}
}
},
},
{
std
::
regex
(
"LSTM
\\
((
\\
d+),(
\\
d+),(
\\
d+),(
\\
d+),
\\
{(.*)
\\
},
\\
{(.*)
\\
},
\\
{(.*)
\\
},
\\
{(.*)
\\
},
\\
{(.*)
\\
}
\\
,([+
\\
-]?
\\
d+)
\\
,([+
\\
-]?
\\
d+)
\\
)"
),
"LSTM(unknownValueThreshold,leftBorder,rightBorder,nbStack,{columns},{focusedBuffer},{focusedStack},{focusedColumns},{maxNbElements},leftBorderRawInput, rightBorderRawInput) : CNN to capture context."
,
[
this
,
topology
](
auto
sm
)
{
std
::
vector
<
int
>
focusedBuffer
,
focusedStack
,
maxNbElements
;
std
::
vector
<
std
::
string
>
focusedColumns
,
columns
;
for
(
auto
s
:
util
::
split
(
std
::
string
(
sm
[
5
]),
','
))
columns
.
emplace_back
(
s
);
for
(
auto
s
:
util
::
split
(
std
::
string
(
sm
[
6
]),
','
))
focusedBuffer
.
push_back
(
std
::
stoi
(
std
::
string
(
s
)));
for
(
auto
s
:
util
::
split
(
std
::
string
(
sm
[
7
]),
','
))
focusedStack
.
push_back
(
std
::
stoi
(
std
::
string
(
s
)));
for
(
auto
s
:
util
::
split
(
std
::
string
(
sm
[
8
]),
','
))
focusedColumns
.
emplace_back
(
s
);
for
(
auto
s
:
util
::
split
(
std
::
string
(
sm
[
9
]),
','
))
maxNbElements
.
push_back
(
std
::
stoi
(
std
::
string
(
s
)));
if
(
focusedColumns
.
size
()
!=
maxNbElements
.
size
())
util
::
myThrow
(
"focusedColumns.size() != maxNbElements.size()"
);
this
->
nn
.
reset
(
new
LSTMNetworkImpl
(
this
->
transitionSet
->
size
(),
std
::
stoi
(
sm
[
1
]),
std
::
stoi
(
sm
[
2
]),
std
::
stoi
(
sm
[
3
]),
std
::
stoi
(
sm
[
4
]),
columns
,
focusedBuffer
,
focusedStack
,
focusedColumns
,
maxNbElements
,
std
::
stoi
(
sm
[
10
]),
std
::
stoi
(
sm
[
11
])));
}
},
{
{
std
::
regex
(
"RLT
\\
(([+
\\
-]?
\\
d+),([+
\\
-]?
\\
d+),([+
\\
-]?
\\
d+)
\\
)"
),
std
::
regex
(
"RLT
\\
(([+
\\
-]?
\\
d+),([+
\\
-]?
\\
d+),([+
\\
-]?
\\
d+)
\\
)"
),
"RLT(leftBorder,rightBorder,nbStack) : Recursive tree LSTM."
,
"RLT(leftBorder,rightBorder,nbStack) : Recursive tree LSTM."
,
...
...
This diff is collapsed.
Click to expand it.
torch_modules/include/LSTMNetwork.hpp
0 → 100644
+
38
−
0
View file @
a0af9039
#ifndef LSTMNETWORK__H
#define LSTMNETWORK__H
#include
"NeuralNetwork.hpp"
class
LSTMNetworkImpl
:
public
NeuralNetworkImpl
{
private
:
static
constexpr
int
maxNbEmbeddings
=
50000
;
int
unknownValueThreshold
;
std
::
vector
<
int
>
focusedBufferIndexes
;
std
::
vector
<
int
>
focusedStackIndexes
;
std
::
vector
<
std
::
string
>
focusedColumns
;
std
::
vector
<
int
>
maxNbElements
;
int
leftWindowRawInput
;
int
rightWindowRawInput
;
int
rawInputSize
;
torch
::
nn
::
Embedding
wordEmbeddings
{
nullptr
};
torch
::
nn
::
Dropout
embeddingsDropout
{
nullptr
};
torch
::
nn
::
Dropout
lstmDropout
{
nullptr
};
torch
::
nn
::
Dropout
hiddenDropout
{
nullptr
};
torch
::
nn
::
Linear
linear1
{
nullptr
};
torch
::
nn
::
Linear
linear2
{
nullptr
};
torch
::
nn
::
LSTM
contextLSTM
{
nullptr
};
torch
::
nn
::
LSTM
rawInputLSTM
{
nullptr
};
std
::
vector
<
torch
::
nn
::
LSTM
>
lstms
;
public
:
LSTMNetworkImpl
(
int
nbOutputs
,
int
unknownValueThreshold
,
int
leftBorder
,
int
rightBorder
,
int
nbStackElements
,
std
::
vector
<
std
::
string
>
columns
,
std
::
vector
<
int
>
focusedBufferIndexes
,
std
::
vector
<
int
>
focusedStackIndexes
,
std
::
vector
<
std
::
string
>
focusedColumns
,
std
::
vector
<
int
>
maxNbElements
,
int
leftWindowRawInput
,
int
rightWindowRawInput
);
torch
::
Tensor
forward
(
torch
::
Tensor
input
)
override
;
std
::
vector
<
std
::
vector
<
long
>>
extractContext
(
Config
&
config
,
Dict
&
dict
)
const
override
;
};
#endif
This diff is collapsed.
Click to expand it.
torch_modules/src/LSTMNetwork.cpp
0 → 100644
+
221
−
0
View file @
a0af9039
#include
"LSTMNetwork.hpp"
LSTMNetworkImpl
::
LSTMNetworkImpl
(
int
nbOutputs
,
int
unknownValueThreshold
,
int
leftBorder
,
int
rightBorder
,
int
nbStackElements
,
std
::
vector
<
std
::
string
>
columns
,
std
::
vector
<
int
>
focusedBufferIndexes
,
std
::
vector
<
int
>
focusedStackIndexes
,
std
::
vector
<
std
::
string
>
focusedColumns
,
std
::
vector
<
int
>
maxNbElements
,
int
leftWindowRawInput
,
int
rightWindowRawInput
)
:
unknownValueThreshold
(
unknownValueThreshold
),
focusedBufferIndexes
(
focusedBufferIndexes
),
focusedStackIndexes
(
focusedStackIndexes
),
focusedColumns
(
focusedColumns
),
maxNbElements
(
maxNbElements
),
leftWindowRawInput
(
leftWindowRawInput
),
rightWindowRawInput
(
rightWindowRawInput
)
{
constexpr
int
embeddingsSize
=
64
;
constexpr
int
hiddenSize
=
1024
;
constexpr
int
contextLSTMSize
=
512
;
constexpr
int
focusedLSTMSize
=
64
;
setLeftBorder
(
leftBorder
);
setRightBorder
(
rightBorder
);
setNbStackElements
(
nbStackElements
);
setColumns
(
columns
);
rawInputSize
=
leftWindowRawInput
+
rightWindowRawInput
+
1
;
if
(
leftWindowRawInput
<
0
or
rightWindowRawInput
<
0
)
rawInputSize
=
0
;
else
rawInputLSTM
=
register_module
(
"rawInputLSTM"
,
torch
::
nn
::
LSTM
(
torch
::
nn
::
LSTMOptions
(
embeddingsSize
,
focusedLSTMSize
).
batch_first
(
false
).
bidirectional
(
true
)));
int
rawInputLSTMOutputSize
=
rawInputSize
==
0
?
0
:
(
rawInputLSTM
->
options
.
hidden_size
()
*
(
rawInputLSTM
->
options
.
bidirectional
()
?
4
:
1
));
wordEmbeddings
=
register_module
(
"word_embeddings"
,
torch
::
nn
::
Embedding
(
torch
::
nn
::
EmbeddingOptions
(
maxNbEmbeddings
,
embeddingsSize
)));
embeddingsDropout
=
register_module
(
"embeddings_dropout"
,
torch
::
nn
::
Dropout
(
0.3
));
lstmDropout
=
register_module
(
"lstm_dropout"
,
torch
::
nn
::
Dropout
(
0.3
));
hiddenDropout
=
register_module
(
"hidden_dropout"
,
torch
::
nn
::
Dropout
(
0.3
));
contextLSTM
=
register_module
(
"contextLSTM"
,
torch
::
nn
::
LSTM
(
torch
::
nn
::
LSTMOptions
(
columns
.
size
()
*
embeddingsSize
,
contextLSTMSize
).
batch_first
(
false
).
bidirectional
(
true
)));
int
totalLSTMOutputSize
=
contextLSTM
->
options
.
hidden_size
()
*
(
contextLSTM
->
options
.
bidirectional
()
?
4
:
1
)
+
rawInputLSTMOutputSize
;
for
(
auto
&
col
:
focusedColumns
)
{
lstms
.
emplace_back
(
register_module
(
fmt
::
format
(
"LSTM_{}"
,
col
),
torch
::
nn
::
LSTM
(
torch
::
nn
::
LSTMOptions
(
embeddingsSize
,
focusedLSTMSize
).
batch_first
(
false
).
bidirectional
(
true
))));
totalLSTMOutputSize
+=
lstms
.
back
()
->
options
.
hidden_size
()
*
(
lstms
.
back
()
->
options
.
bidirectional
()
?
4
:
1
)
*
(
focusedBufferIndexes
.
size
()
+
focusedStackIndexes
.
size
());
}
linear1
=
register_module
(
"linear1"
,
torch
::
nn
::
Linear
(
totalLSTMOutputSize
,
hiddenSize
));
linear2
=
register_module
(
"linear2"
,
torch
::
nn
::
Linear
(
hiddenSize
,
nbOutputs
));
}
torch
::
Tensor
LSTMNetworkImpl
::
forward
(
torch
::
Tensor
input
)
{
if
(
input
.
dim
()
==
1
)
input
=
input
.
unsqueeze
(
0
);
auto
embeddings
=
embeddingsDropout
(
wordEmbeddings
(
input
));
auto
context
=
embeddings
.
narrow
(
1
,
rawInputSize
,
columns
.
size
()
*
(
1
+
leftBorder
+
rightBorder
));
context
=
context
.
view
({
context
.
size
(
0
),
context
.
size
(
1
)
/
(
int
)
columns
.
size
(),
(
int
)
columns
.
size
()
*
(
int
)
wordEmbeddings
->
options
.
embedding_dim
()});
auto
elementsEmbeddings
=
embeddings
.
narrow
(
1
,
rawInputSize
+
context
.
size
(
1
),
input
.
size
(
1
)
-
(
rawInputSize
+
context
.
size
(
1
)));
context
=
context
.
permute
({
1
,
0
,
2
});
std
::
vector
<
torch
::
Tensor
>
lstmOutputs
;
if
(
rawInputSize
!=
0
)
{
auto
rawLetters
=
embeddings
.
narrow
(
1
,
0
,
leftWindowRawInput
+
rightWindowRawInput
+
1
).
permute
({
1
,
0
});
auto
lstmOut
=
rawInputLSTM
(
rawLetters
).
output
;
if
(
rawInputLSTM
->
options
.
bidirectional
())
lstmOutputs
.
emplace_back
(
torch
::
cat
({
lstmOut
[
0
],
lstmOut
[
-
1
]},
1
));
else
lstmOutputs
.
emplace_back
(
lstmOut
[
-
1
]);
}
auto
curIndex
=
0
;
for
(
unsigned
int
i
=
0
;
i
<
focusedColumns
.
size
();
i
++
)
{
long
nbElements
=
maxNbElements
[
i
];
for
(
unsigned
int
focused
=
0
;
focused
<
focusedBufferIndexes
.
size
()
+
focusedStackIndexes
.
size
();
focused
++
)
{
auto
lstmInput
=
elementsEmbeddings
.
narrow
(
1
,
curIndex
,
nbElements
).
permute
({
1
,
0
,
2
});
curIndex
+=
nbElements
;
auto
lstmOut
=
lstms
[
i
](
lstmInput
).
output
;
if
(
lstms
[
i
]
->
options
.
bidirectional
())
lstmOutputs
.
emplace_back
(
torch
::
cat
({
lstmOut
[
0
],
lstmOut
[
-
1
]},
1
));
else
lstmOutputs
.
emplace_back
(
lstmOut
[
-
1
]);
}
}
auto
lstmOut
=
contextLSTM
(
context
).
output
;
if
(
contextLSTM
->
options
.
bidirectional
())
lstmOutputs
.
emplace_back
(
torch
::
cat
({
lstmOut
[
0
],
lstmOut
[
-
1
]},
1
));
else
lstmOutputs
.
emplace_back
(
lstmOut
[
-
1
]);
auto
totalInput
=
lstmDropout
(
torch
::
cat
(
lstmOutputs
,
1
));
return
linear2
(
hiddenDropout
(
torch
::
relu
(
linear1
(
totalInput
))));
}
std
::
vector
<
std
::
vector
<
long
>>
LSTMNetworkImpl
::
extractContext
(
Config
&
config
,
Dict
&
dict
)
const
{
if
(
dict
.
size
()
>=
maxNbEmbeddings
)
util
::
warning
(
fmt
::
format
(
"dict.size()={} > maxNbEmbeddings={}"
,
dict
.
size
(),
maxNbEmbeddings
));
std
::
vector
<
long
>
contextIndexes
=
extractContextIndexes
(
config
);
std
::
vector
<
std
::
vector
<
long
>>
context
;
context
.
emplace_back
();
if
(
rawInputSize
>
0
)
{
for
(
int
i
=
0
;
i
<
leftWindowRawInput
;
i
++
)
if
(
config
.
hasCharacter
(
config
.
getCharacterIndex
()
-
leftWindowRawInput
+
i
))
context
.
back
().
push_back
(
dict
.
getIndexOrInsert
(
fmt
::
format
(
"Letter({})"
,
config
.
getLetter
(
config
.
getCharacterIndex
()
-
leftWindowRawInput
+
i
))));
else
context
.
back
().
push_back
(
dict
.
getIndexOrInsert
(
Dict
::
nullValueStr
));
for
(
int
i
=
0
;
i
<=
rightWindowRawInput
;
i
++
)
if
(
config
.
hasCharacter
(
config
.
getCharacterIndex
()
+
i
))
context
.
back
().
push_back
(
dict
.
getIndexOrInsert
(
fmt
::
format
(
"Letter({})"
,
config
.
getLetter
(
config
.
getCharacterIndex
()
+
i
))));
else
context
.
back
().
push_back
(
dict
.
getIndexOrInsert
(
Dict
::
nullValueStr
));
}
for
(
auto
index
:
contextIndexes
)
for
(
auto
&
col
:
columns
)
if
(
index
==
-
1
)
for
(
auto
&
contextElement
:
context
)
contextElement
.
push_back
(
dict
.
getIndexOrInsert
(
Dict
::
nullValueStr
));
else
{
int
dictIndex
=
dict
.
getIndexOrInsert
(
config
.
getAsFeature
(
col
,
index
));
for
(
auto
&
contextElement
:
context
)
contextElement
.
push_back
(
dictIndex
);
if
(
is_training
())
if
(
col
==
"FORM"
||
col
==
"LEMMA"
)
if
(
dict
.
getNbOccs
(
dictIndex
)
<=
unknownValueThreshold
)
{
context
.
emplace_back
(
context
.
back
());
context
.
back
().
back
()
=
dict
.
getIndexOrInsert
(
Dict
::
unknownValueStr
);
}
}
for
(
auto
&
contextElement
:
context
)
for
(
unsigned
int
colIndex
=
0
;
colIndex
<
focusedColumns
.
size
();
colIndex
++
)
{
auto
&
col
=
focusedColumns
[
colIndex
];
std
::
vector
<
int
>
focusedIndexes
;
for
(
auto
relIndex
:
focusedBufferIndexes
)
{
int
index
=
relIndex
+
leftBorder
;
if
(
index
<
0
||
index
>=
(
int
)
contextIndexes
.
size
())
focusedIndexes
.
push_back
(
-
1
);
else
focusedIndexes
.
push_back
(
contextIndexes
[
index
]);
}
for
(
auto
index
:
focusedStackIndexes
)
{
if
(
!
config
.
hasStack
(
index
))
focusedIndexes
.
push_back
(
-
1
);
else
if
(
!
config
.
has
(
col
,
config
.
getStack
(
index
),
0
))
focusedIndexes
.
push_back
(
-
1
);
else
focusedIndexes
.
push_back
(
config
.
getStack
(
index
));
}
for
(
auto
index
:
focusedIndexes
)
{
if
(
index
==
-
1
)
{
for
(
int
i
=
0
;
i
<
maxNbElements
[
colIndex
];
i
++
)
contextElement
.
emplace_back
(
dict
.
getIndexOrInsert
(
Dict
::
nullValueStr
));
continue
;
}
std
::
vector
<
std
::
string
>
elements
;
if
(
col
==
"FORM"
)
{
auto
asUtf8
=
util
::
splitAsUtf8
(
config
.
getAsFeature
(
col
,
index
).
get
());
for
(
int
i
=
0
;
i
<
maxNbElements
[
colIndex
];
i
++
)
if
(
i
<
(
int
)
asUtf8
.
size
())
elements
.
emplace_back
(
fmt
::
format
(
"Letter({})"
,
asUtf8
[
i
]));
else
elements
.
emplace_back
(
Dict
::
nullValueStr
);
}
else
if
(
col
==
"FEATS"
)
{
auto
splited
=
util
::
split
(
config
.
getAsFeature
(
col
,
index
).
get
(),
'|'
);
for
(
int
i
=
0
;
i
<
maxNbElements
[
colIndex
];
i
++
)
if
(
i
<
(
int
)
splited
.
size
())
elements
.
emplace_back
(
fmt
::
format
(
"FEATS({})"
,
splited
[
i
]));
else
elements
.
emplace_back
(
Dict
::
nullValueStr
);
}
else
if
(
col
==
"ID"
)
{
if
(
config
.
isTokenPredicted
(
index
))
elements
.
emplace_back
(
"ID(TOKEN)"
);
else
if
(
config
.
isMultiwordPredicted
(
index
))
elements
.
emplace_back
(
"ID(MULTIWORD)"
);
else
if
(
config
.
isEmptyNodePredicted
(
index
))
elements
.
emplace_back
(
"ID(EMPTYNODE)"
);
}
else
{
elements
.
emplace_back
(
config
.
getAsFeature
(
col
,
index
));
}
if
((
int
)
elements
.
size
()
!=
maxNbElements
[
colIndex
])
util
::
myThrow
(
fmt
::
format
(
"elements.size ({}) != maxNbElements[colIndex ({},{})]"
,
elements
.
size
(),
maxNbElements
[
colIndex
],
col
));
for
(
auto
&
element
:
elements
)
contextElement
.
emplace_back
(
dict
.
getIndexOrInsert
(
element
));
}
}
if
(
!
is_training
()
&&
context
.
size
()
>
1
)
util
::
myThrow
(
fmt
::
format
(
"Not in training mode, yet context yields multiple variants (size={})"
,
context
.
size
()));
return
context
;
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment