Skip to content
Snippets Groups Projects
Commit 79392732 authored by Franck Dary's avatar Franck Dary
Browse files

Added CNN Network

parent 5aafa66a
No related branches found
No related tags found
No related merge requests found
...@@ -3,6 +3,7 @@ ...@@ -3,6 +3,7 @@
#include "OneWordNetwork.hpp" #include "OneWordNetwork.hpp"
#include "ConcatWordsNetwork.hpp" #include "ConcatWordsNetwork.hpp"
#include "RTLSTMNetwork.hpp" #include "RTLSTMNetwork.hpp"
#include "CNNNetwork.hpp"
Classifier::Classifier(const std::string & name, const std::string & topology, const std::string & tsFile) Classifier::Classifier(const std::string & name, const std::string & topology, const std::string & tsFile)
{ {
...@@ -46,6 +47,14 @@ void Classifier::initNeuralNetwork(const std::string & topology) ...@@ -46,6 +47,14 @@ void Classifier::initNeuralNetwork(const std::string & topology)
this->nn.reset(new ConcatWordsNetworkImpl(this->transitionSet->size(), std::stoi(sm[1]), std::stoi(sm[2]), std::stoi(sm[3]))); this->nn.reset(new ConcatWordsNetworkImpl(this->transitionSet->size(), std::stoi(sm[1]), std::stoi(sm[2]), std::stoi(sm[3])));
} }
}, },
{
std::regex("CNN\\(([+\\-]?\\d+),([+\\-]?\\d+),([+\\-]?\\d+)\\)"),
"CNN(leftBorder,rightBorder,nbStack) : CNN to capture context.",
[this,topology](auto sm)
{
this->nn.reset(new CNNNetworkImpl(this->transitionSet->size(), std::stoi(sm[1]), std::stoi(sm[2]), std::stoi(sm[3])));
}
},
{ {
std::regex("RTLSTM\\(([+\\-]?\\d+),([+\\-]?\\d+),([+\\-]?\\d+)\\)"), std::regex("RTLSTM\\(([+\\-]?\\d+),([+\\-]?\\d+),([+\\-]?\\d+)\\)"),
"RTLSTM(leftBorder,rightBorder,nbStack) : Recursive tree LSTM.", "RTLSTM(leftBorder,rightBorder,nbStack) : Recursive tree LSTM.",
......
#ifndef CNNNETWORK__H
#define CNNNETWORK__H
#include "NeuralNetwork.hpp"
class CNNNetworkImpl : public NeuralNetworkImpl
{
private :
static inline std::vector<long> focusedBufferIndexes{0,1};
static inline std::vector<long> windowSizes{2,3,4};
static constexpr unsigned int maxNbLetters = 10;
torch::nn::Embedding wordEmbeddings{nullptr};
torch::nn::Linear linear1{nullptr};
torch::nn::Linear linear2{nullptr};
std::vector<torch::nn::Conv2d> CNNs;
std::vector<torch::nn::Conv2d> lettersCNNs;
public :
CNNNetworkImpl(int nbOutputs, int leftBorder, int rightBorder, int nbStackElements);
torch::Tensor forward(torch::Tensor input) override;
std::vector<long> extractContext(Config & config, Dict & dict) const override;
};
#endif
#include "CNNNetwork.hpp"
CNNNetworkImpl::CNNNetworkImpl(int nbOutputs, int leftBorder, int rightBorder, int nbStackElements)
{
constexpr int embeddingsSize = 64;
constexpr int hiddenSize = 512;
constexpr int nbFilters = 512;
constexpr int nbFiltersLetters = 64;
setLeftBorder(leftBorder);
setRightBorder(rightBorder);
setNbStackElements(nbStackElements);
setColumns({"FORM", "UPOS"});
wordEmbeddings = register_module("word_embeddings", torch::nn::Embedding(torch::nn::EmbeddingOptions(50000, embeddingsSize)));
linear1 = register_module("linear1", torch::nn::Linear(nbFilters*windowSizes.size()+nbFiltersLetters*windowSizes.size()*focusedBufferIndexes.size(), hiddenSize));
linear2 = register_module("linear2", torch::nn::Linear(hiddenSize, nbOutputs));
for (auto & windowSize : windowSizes)
{
CNNs.emplace_back(register_module(fmt::format("cnn_context_{}", windowSize), torch::nn::Conv2d(torch::nn::Conv2dOptions(1, nbFilters, torch::ExpandingArray<2>({windowSize,2*embeddingsSize})).padding({windowSize-1, 0}))));
lettersCNNs.emplace_back(register_module(fmt::format("cnn_letters_{}", windowSize), torch::nn::Conv2d(torch::nn::Conv2dOptions(1, nbFiltersLetters, torch::ExpandingArray<2>({windowSize,embeddingsSize})).padding({windowSize-1, 0}))));
}
}
torch::Tensor CNNNetworkImpl::forward(torch::Tensor input)
{
if (input.dim() == 1)
input = input.unsqueeze(0);
auto wordIndexes = input.narrow(1, 0, columns.size()*(1+leftBorder+rightBorder));
auto wordLetters = input.narrow(1, columns.size()*(1+leftBorder+rightBorder), maxNbLetters*focusedBufferIndexes.size());
auto embeddings = wordEmbeddings(wordIndexes).view({wordIndexes.size(0), wordIndexes.size(1)/(int)columns.size(), (int)columns.size()*(int)wordEmbeddings->options.embedding_dim()}).unsqueeze(1);
auto lettersEmbeddings = wordEmbeddings(wordLetters).view({wordLetters.size(0), wordLetters.size(1)/maxNbLetters, maxNbLetters, wordEmbeddings->options.embedding_dim()}).unsqueeze(1);
auto permuted = lettersEmbeddings.permute({2,0,1,3,4});
std::vector<torch::Tensor> windows;
for (unsigned int word = 0; word < focusedBufferIndexes.size(); word++)
for (unsigned int i = 0; i < lettersCNNs.size(); i++)
{
auto input = permuted[word];
auto convOut = torch::relu(lettersCNNs[i](input).squeeze(-1));
auto pooled = torch::max_pool1d(convOut, convOut.size(2));
windows.emplace_back(pooled);
}
auto lettersCnnOut = torch::cat(windows, 2);
lettersCnnOut = lettersCnnOut.view({lettersCnnOut.size(0), -1});
windows.clear();
for (unsigned int i = 0; i < CNNs.size(); i++)
{
auto convOut = torch::relu(CNNs[i](embeddings).squeeze(-1));
auto pooled = torch::max_pool1d(convOut, convOut.size(2));
windows.emplace_back(pooled);
}
auto cnnOut = torch::cat(windows, 2);
cnnOut = cnnOut.view({cnnOut.size(0), -1});
auto totalInput = torch::cat({cnnOut, lettersCnnOut}, 1);
return linear2(torch::relu(linear1(totalInput)));
}
std::vector<long> CNNNetworkImpl::extractContext(Config & config, Dict & dict) const
{
std::stack<int> leftContext;
std::stack<std::string> leftForms;
for (int index = config.getWordIndex()-1; config.has(0,index,0) && leftContext.size() < columns.size()*leftBorder; --index)
if (config.isToken(index))
for (auto & column : columns)
{
leftContext.push(dict.getIndexOrInsert(config.getAsFeature(column, index)));
if (column == "FORM")
leftForms.push(config.getAsFeature(column, index));
}
std::vector<long> context;
std::vector<std::string> forms;
while ((int)context.size() < (int)columns.size()*(leftBorder-(int)leftContext.size()))
context.emplace_back(dict.getIndexOrInsert(Dict::nullValueStr));
while (forms.size() < leftBorder-leftForms.size())
forms.emplace_back("");
while (!leftForms.empty())
{
forms.emplace_back(leftForms.top());
leftForms.pop();
}
while (!leftContext.empty())
{
context.emplace_back(leftContext.top());
leftContext.pop();
}
for (int index = config.getWordIndex(); config.has(0,index,0) && context.size() < columns.size()*(leftBorder+rightBorder+1); ++index)
if (config.isToken(index))
for (auto & column : columns)
{
context.emplace_back(dict.getIndexOrInsert(config.getAsFeature(column, index)));
if (column == "FORM")
forms.emplace_back(config.getAsFeature(column, index));
}
while (context.size() < columns.size()*(leftBorder+rightBorder+1))
context.emplace_back(dict.getIndexOrInsert(Dict::nullValueStr));
while ((int)forms.size() < leftBorder+rightBorder+1)
forms.emplace_back("");
for (int i = 0; i < nbStackElements; i++)
for (auto & column : columns)
if (config.hasStack(i))
context.emplace_back(dict.getIndexOrInsert(config.getAsFeature(column, config.getStack(i))));
else
context.emplace_back(dict.getIndexOrInsert(Dict::nullValueStr));
for (auto index : focusedBufferIndexes)
{
util::utf8string letters;
if (leftBorder+index >= 0 && leftBorder+index < (int)forms.size() && !forms[leftBorder+index].empty())
letters = util::splitAsUtf8(forms[leftBorder+index]);
for (unsigned int i = 0; i < maxNbLetters; i++)
{
if (i < letters.size())
{
std::string sLetter = fmt::format("Letter({})", letters[i]);
context.emplace_back(dict.getIndexOrInsert(sLetter));
}
else
{
context.emplace_back(dict.getIndexOrInsert(Dict::nullValueStr));
}
}
}
return context;
}
...@@ -18,7 +18,7 @@ class Trainer ...@@ -18,7 +18,7 @@ class Trainer
DataLoader dataLoader{nullptr}; DataLoader dataLoader{nullptr};
std::unique_ptr<torch::optim::Adam> optimizer; std::unique_ptr<torch::optim::Adam> optimizer;
std::size_t epochNumber{0}; std::size_t epochNumber{0};
int batchSize{1}; int batchSize{50};
int nbExamples{0}; int nbExamples{0};
public : public :
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment