-
Franck Dary authoredFranck Dary authored
macaon_train.cpp 3.17 KiB
#include <boost/program_options.hpp>
#include <filesystem>
#include "util.hpp"
#include "Trainer.hpp"
#include "Decoder.hpp"
namespace po = boost::program_options;
po::options_description getOptionsDescription()
{
po::options_description desc("Command-Line Arguments ");
po::options_description req("Required");
req.add_options()
("model", po::value<std::string>()->required(),
"Directory containing the machine file to train")
("mcd", po::value<std::string>()->required(),
"Multi Column Description file that describes the input format")
("trainTSV", po::value<std::string>()->required(),
"TSV file of the training corpus, in CONLLU format");
po::options_description opt("Optional");
opt.add_options()
("trainTXT", po::value<std::string>()->default_value(""),
"Raw text file of the training corpus")
("devTSV", po::value<std::string>()->default_value(""),
"TSV file of the development corpus, in CONLLU format")
("devTXT", po::value<std::string>()->default_value(""),
"Raw text file of the development corpus")
("nbEpochs,n", po::value<int>()->default_value(5),
"Number of training epochs")
("help,h", "Produce this help message");
desc.add(req).add(opt);
return desc;
}
po::variables_map checkOptions(po::options_description & od, int argc, char ** argv)
{
po::variables_map vm;
try {po::store(po::parse_command_line(argc, argv, od), vm);}
catch(std::exception & e) {util::myThrow(e.what());}
if (vm.count("help"))
{
std::stringstream ss;
ss << od;
fmt::print(stderr, "{}\n", ss.str());
exit(0);
}
try {po::notify(vm);}
catch(std::exception& e) {util::myThrow(e.what());}
return vm;
}
int main(int argc, char * argv[])
{
auto od = getOptionsDescription();
auto variables = checkOptions(od, argc, argv);
std::filesystem::path modelPath(variables["model"].as<std::string>());
auto machinePath = modelPath / "machine.rm";
auto mcdFile = variables["mcd"].as<std::string>();
auto trainTsvFile = variables["trainTSV"].as<std::string>();
auto trainRawFile = variables["trainTXT"].as<std::string>();
auto devTsvFile = variables["devTSV"].as<std::string>();
auto devRawFile = variables["devTXT"].as<std::string>();
auto nbEpoch = variables["nbEpochs"].as<int>();
ReadingMachine machine(machinePath.string());
BaseConfig goldConfig(mcdFile, trainTsvFile, trainRawFile);
SubConfig config(goldConfig);
Trainer trainer(machine);
trainer.createDataset(config);
Decoder decoder(machine);
BaseConfig devGoldConfig(mcdFile, devTsvFile, devRawFile);
float bestDevScore = 0;
for (int i = 0; i < nbEpoch; i++)
{
float loss = trainer.epoch();
auto devConfig = devGoldConfig;
fmt::print(stderr, "\r{:80}\rDecoding dev...", " ");
decoder.decode(devConfig, 1);
decoder.evaluate(devConfig, modelPath, devTsvFile);
float devScore = decoder.getF1Score("UPOS");
bool saved = devScore > bestDevScore;
if (saved)
{
bestDevScore = devScore;
machine.save();
}
fmt::print(stderr, "\r{:80}\rEpoch {:^9} loss = {:7.2f} dev = {:6.2f}% {:5}\n", " ", fmt::format("{}/{}", i+1, nbEpoch), loss, devScore, saved ? "SAVED" : "");
}
return 0;
}