Newer
Older
#include <boost/program_options.hpp>
#include <filesystem>
#include "util.hpp"
#include "Trainer.hpp"
#include "Decoder.hpp"
namespace po = boost::program_options;
po::options_description getOptionsDescription()
{
po::options_description desc("Command-Line Arguments ");
po::options_description req("Required");
req.add_options()
("model", po::value<std::string>()->required(),
"Directory containing the machine file to train")
("mcd", po::value<std::string>()->required(),
"Multi Column Description file that describes the input format")
("trainTSV", po::value<std::string>()->required(),
"TSV file of the training corpus, in CONLLU format");
po::options_description opt("Optional");
opt.add_options()
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
("trainTXT", po::value<std::string>()->default_value(""),
"Raw text file of the training corpus")
("devTSV", po::value<std::string>()->default_value(""),
"TSV file of the development corpus, in CONLLU format")
("devTXT", po::value<std::string>()->default_value(""),
"Raw text file of the development corpus")
("nbEpochs,n", po::value<int>()->default_value(5),
"Number of training epochs")
("help,h", "Produce this help message");
desc.add(req).add(opt);
return desc;
}
po::variables_map checkOptions(po::options_description & od, int argc, char ** argv)
{
po::variables_map vm;
try {po::store(po::parse_command_line(argc, argv, od), vm);}
catch(std::exception & e) {util::myThrow(e.what());}
if (vm.count("help"))
{
std::stringstream ss;
ss << od;
fmt::print(stderr, "{}\n", ss.str());
exit(0);
}
try {po::notify(vm);}
catch(std::exception& e) {util::myThrow(e.what());}
return vm;
}
int main(int argc, char * argv[])
{
auto od = getOptionsDescription();
auto variables = checkOptions(od, argc, argv);
std::filesystem::path modelPath(variables["model"].as<std::string>());
auto machinePath = modelPath / "machine.rm";
auto mcdFile = variables["mcd"].as<std::string>();
auto trainTsvFile = variables["trainTSV"].as<std::string>();
auto trainRawFile = variables["trainTXT"].as<std::string>();
auto devTsvFile = variables["devTSV"].as<std::string>();
auto devRawFile = variables["devTXT"].as<std::string>();
auto nbEpoch = variables["nbEpochs"].as<int>();
bool debug = variables.count("debug") == 0 ? false : true;
ReadingMachine machine(machinePath.string());
BaseConfig goldConfig(mcdFile, trainTsvFile, trainRawFile);
SubConfig config(goldConfig);
Trainer trainer(machine);
Decoder decoder(machine);
BaseConfig devGoldConfig(mcdFile, devTsvFile, devRawFile);
machine.getStrategy().reset();
if (debug)
fmt::print(stderr, "Decoding dev :\n");
else
fmt::print(stderr, "\r{:80}\rDecoding dev...", " ");
decoder.decode(devConfig, 1, debug);
machine.getStrategy().reset();
decoder.evaluate(devConfig, modelPath, devTsvFile);
std::vector<std::pair<float,std::string>> devScores = decoder.getF1Scores(machine.getPredicted());
std::string devScoresStr = "";
float devScoreMean = 0;
for (auto & score : devScores)
{
devScoresStr += fmt::format("{}({:5.2f}%),", score.second, score.first);
devScoreMean += score.first;
}
if (!devScoresStr.empty())
devScoresStr.pop_back();
devScoreMean /= devScores.size();
bool saved = devScoreMean > bestDevScore;
bestDevScore = devScoreMean;
fmt::print(stderr, "Epoch {:^5} loss = {:6.1f} dev = {} {:5}\n", fmt::format("{}/{}", i+1, nbEpoch), loss, devScoresStr, saved ? "SAVED" : "");
fmt::print(stderr, "\r{:80}\rEpoch {:^5} loss = {:6.1f} dev = {} {:5}\n", " ", fmt::format("{}/{}", i+1, nbEpoch), loss, devScoresStr, saved ? "SAVED" : "");
}
catch(std::exception & e) {util::error(e);}